首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stemflow of a dry sclerophyll eucalypt forest and a nearby Pinus radiata plantation was studied on a rainfall event basis. The stemflow yields of the forests are quantified, compared, and presented on an annual basis for four years. Yields of the individual eucalypt species are compared and the tree characteristics responsible for the yield differences are discussed. The influence of event size, type, and season on stemflow are also shown. Rainfall angle is shown to have a significant effect on stemflow yield.  相似文献   

2.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

3.
A review of rainfall interception modelling   总被引:4,自引:0,他引:4  
This paper is a review of physically-based rainfall interception modelling. Fifteen models were selected, representing distinct concepts of the interception process. Applications of these models to field data sets published before March 2008 are also analysed. We review the theoretical basis of the different models, and give an overview of the models’ characteristics. The review is designed to help with the decision on which model to apply to a specific data set. The most commonly applied models were found to be the original and sparse Gash models (69 cases) and the original and sparse Rutter models (42 cases). The remaining 11 models have received much less attention, but the contribution of the Mulder model should also be acknowledged. The review reveals the need for more modelling of deciduous forest, for progressively more sparse forest and for forest in regions with intensive storms and the consequent high rainfall rates. The present review also highlights drawbacks of previous model applications. Failure to validate models, the few comparative studies, and lack of consideration given to uncertainties in measurements and parameters are the most outstanding drawbacks. Finally, the uncertainties in model input data are rarely taken into account in rainfall interception modelling.  相似文献   

4.
Spatial distribution of rainfall trends in Sicily (1921-2000)   总被引:7,自引:0,他引:7  
The feared global climate change could have important effects on various environmental variables including rainfall in many countries around the world. Changes in precipitation regime directly affect water resources management, agriculture, hydrology and ecosystems. For this reason it is important to investigate the changes in the spatial and temporal rainfall pattern in order to improve water management strategies.In this study a non-parametric statistical method (Mann-Kendall rank correlation method) is employed in order to verify the existence of trend in annual, seasonal and monthly rainfall and the distribution of the rainfall during the year. This test is applied to about 250 rain gauge stations in Sicily (Italy) after a series of procedures finalized to the estimation of missing records and to the verification of data consistency.In order to understand the regional pattern of precipitation in Sicily, the detected trends are spatially interpolated using spatial analysis techniques in a GIS environment.The results show the existence of a generalized negative trend for the entire region.  相似文献   

5.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

6.
The paper deals with an application of a stochastic model to the frequency and duration of precipitation events. With the aid of the model, the magnitudes ofmth highest rainfall amount in 24 hours' duration with 97.5% probability are obtained for various climatic regimes over a tropical monsoon region. There is good agreement between them-day minimum rainfall estimated through the model and the observed value. The model satisfactorily explains the frequency of the extreme rainfall event.  相似文献   

7.
The aim of this study is to assess rainfall estimates by a dual polarized X-band radar. This study was part of the European project FRAMEA (Flood forecasting using Radar in Alpine and Mediterranean Areas). Two radars were set up near the small town of Collobrières in South Eastern France. The first radar was a dual polarized X-band radar (Hydrix®) associated with a ZPHI® algorithm while the second one was an S-band radar (Météo France). We compared radar rainfall data with measurements obtained by two rain gauge networks (Météo France and Cemagref). During the experiments from February 2006 to June 2007, four significant rainfall events occurred. The accuracy of the rain rate obtained with both S-band and X-band radars decreased significantly beyond 60 km, in particular for the X-band radar. At closer ranges, such as 30–60 km from the radars, the X-band and the S-band radar retrievals showed similar performance with Nash criteria around 0.80 for the X-band radar and 0.75 for the S-band radar. Furthermore, the X-band radar did not require calibration on rainfall records, which tends to make it a useful method to assess rainfall in areas without a rain gauge network.  相似文献   

8.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

9.
The canopy storage capacity of a dry sclerophyll eucalypt forest was determined. This required destructive sampling of three major species of trees and development of a water soakage method for the measurement of water holding capacity of all above ground components. The influence of antecedent weather conditions on canopy storage capacity was assessed. It was shown that the interactive effects of leaf area and water holding capacity of all tree components were such that the estimated canopy storage capacity (0-39 mm) was likely to change little except under extreme conditions of drought and rainfall. The effect of species composition on forest canopy storage capacity is also presented. The wetting processes are described and compared with those discussed in other studies. They are shown to be relevant to the estimation of canopy storage capacity in almost any forest.  相似文献   

10.
A long record (1862–2004) of seasonal rainfall and temperature from the Rome observatory of Collegio Romano are modeled in a nonstationary framework by means of the Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to characterize nonstationarities in rainfall and related climate variables. It is shown that the GAMLSS models are able to represent the magnitude and spread in the seasonal time series with parameters which are a smooth function of time. Covariate analyses highlight the role of seasonal and interannual variability of large-scale climate forcing, as reflected in three teleconnection indexes (Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Mediterranean Index), for modeling seasonal rainfall and temperature over Rome. In particular, the North Atlantic Oscillation is a significant predictor during the winter, while the Mediterranean Index is a significant predictor for almost all seasons.  相似文献   

11.
Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country’s water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.  相似文献   

12.
Vegetation in arid and semi-arid regions is affected by intermittent water availability. We discuss a simple stochastic model describing the coupled dynamics of soil moisture and vegetation, and study the effects of rainfall intermittency. Soil moisture dynamics is described by a ecohydrological box model, while vegetation is represented by site occupancy dynamics in a spatially-implicit model. We show that temporal rainfall intermittency allows for vegetation persistence at low values of annual rainfall volume, whereas it would go extinct if rainfall were constant. Rainfall intermittency also generates long-term fluctuations in vegetation cover, even in the absence of significant inter-annual variations in the statistical properties of precipitation.  相似文献   

13.
Competition between human use and spring-dependent systems puts these systems in jeopardy. This study analyzed whether Florida springs have experienced reductions in springflow over the last century using time series data from state and federal agencies. Of 57 springs, 26 exhibited negative trends in springflow; these declines were correlated with population growth, with groundwater withdrawals, and to a lesser extent with rainfall. Even in a region with abundant rainfall, population growth has impacted spring integrity.  相似文献   

14.
Rainfall runoff (RR) models are fundamental tools for reducing flood hazards. Although several studies have highlighted the potential of soil moisture (SM) observations to improve flood modelling, much research has still to be done for fully exploiting the evident connection between SM and runoff. As a way of example, improving the quality of forcing data, i.e. rainfall observations, may have a great benefit in flood simulation. Such data are the main hydrological forcing of classical RR models but may suffer from poor quality and record interruption issues. This study explores the potential of using SM observations to improve rainfall observations and set a reliable initial wetness condition of the catchment for improving the capability in flood modelling. In particular, a RR model, which incorporates SM for its initialization, and an algorithm for rainfall estimation from SM observations are coupled using a simple integration method. The study carried out at the Valescure experimental catchment (France) demonstrates the high information content retained by SM for RR transformation, thus giving new possibilities for improving hydrological applications. Results show that an appropriate configuration of the two models allows obtaining improvement in flood simulation up to 15% in mean and 34% in median Nash Sutcliffe performances as well as a reduction of the median error in volume and on peak discharge of about 30% and 15%, respectively.  相似文献   

15.
Spatial correlation structure in small-scale rainfall is analyzed based on a dense cluster of raingauges in Central Oklahoma. This cluster, called the EVAC PicoNet, consists of 53 gauges installed in 25 measurement stations covering an area of about 3 km by 3 km. Two raingauges are placed in 24 stations and five in the central station. Three aspects of the estimated spatial correlation functions are discussed: dependence on time-scale ranging from 1 min to 24 h, inter-storm variability, and dependence on rainfall intensity. The results show a regular dependence of the correlogram parameters on the averaging time-scale, large differences of the correlograms in the individual storms, and the dominance of storms with high spatial variability on the average large sample characteristics. The authors also demonstrate and discuss the ambiguities in correlation estimates conditioned on rainfall intensities. The findings of this study have implications for raingauge network design, rainfall modeling, and conclusive evaluation of radar and satellite estimates of rainfall.  相似文献   

16.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

17.
Contrasting regional discharge evolutions in the Amazon basin (1974–2004)   总被引:1,自引:0,他引:1  
Former hydrological studies in the Amazon Basin generally describe annual discharge variability on the main stem. However, the downstream Amazon River only represents the mean state of the Amazonian hydrological system. This study therefore uses a new data set including daily discharge in 18 sub-basins to analyze the variability of regional extremes in the Amazon basin, after recalling the diversity of the hydrological annual cycles within the Amazon basin. Several statistical tests are applied in order to detect trends and breaks in the time series. We show that during the 1974–2004 period, the stability of the mean discharge on the main stem in Óbidos is explained by opposite regional features that principally involve Andean rivers: a decrease in the low stage runoff, particularly important in the southern regions, and an increase in the high stage runoff in the northwestern region. Both features are observed from the beginning of the nineties. These features are also observed in smaller meridian sub-basins in Peru and Bolivia. Moreover we show that the changes in discharge extremes are related to the regional pluriannual rainfall variability and the associated atmospheric circulation as well as to tropical large-scale climatic indicators.  相似文献   

18.
Extreme rainfall events recently occurring in Korea have been shown to change frequency-based rainfall amounts quite significantly. Regardless of the reason for these extremes, the general concern of most hydrologists is how to handle these events for practical applications in Hydrology. Our study aim is to evaluate these extremes with their effect on frequency-based rainfall amounts, especially if they can be assumed to be within normal levels. As there is no commonly accepted methodology to be applied to this kind of study, we follow simplified steps such as: (1) estimation of the climatological variance of frequency-based rainfall amounts, (2) estimation of confidence intervals of frequency-based rainfall amounts (lower and upper bounds for the 5 and 1% significance levels estimated using the climatological variance), and (3) evaluation of the effect of extra rainfall events on the frequency-based rainfall amounts. Twelve stations on the Korean peninsula are selected as they have relatively longer data length. The annual maximum rainfall data collected from 1954 to 1998 are used. From this study we concluded that (1) at least 30 years of data length should be used for the frequency analysis in order to assure the stability of the variance of frequency-based rainfall amounts, (2) the climatological variances estimated all range from 5 to 8% of the frequency-based rainfall amounts, and (3) even though the frequency-based rainfall amount seems to become extreme with seemingly abnormal events, it still remains under its upper bound for the 5 or 1% significance levels estimated using the climatological variance, as well as it decays exponentially to the normal level as extra events are added. Thus, we conclude that we do not need to panic over seemingly abnormal events occurring so far, but just need to consider the variability inherent in frequency-based rainfall amounts.  相似文献   

19.
Extreme rainfall events are of particular importance due to their severe impacts on the economy, the environment and the society. Characterization and quantification of extremes and their spatial dependence structure may lead to a better understanding of extreme events. An important concept in statistical modeling is the tail dependence coefficient (TDC) that describes the degree of association between concurrent rainfall extremes at different locations. Accurate knowledge of the spatial characteristics of the TDC can help improve on the existing models of the occurrence probability of extreme storms. In this study, efficient estimation of the TDC in rainfall is investigated using a dense network of rain gauges located in south Louisiana, USA. The inter-gauge distances in this network range from about 1 km to 9 km. Four different nonparametric TDC estimators are implemented on samples of the rain gauge data and their advantages and disadvantages are discussed. Three averaging time-scales are considered: 1 h, 2 h and 3 h. The results indicate that a significant tail dependency may exist that cannot be ignored for realistic modeling of multivariate rainfall fields. Presence of a strong dependence among extremes contradicts with the assumption of joint normality, commonly used in hydrologic applications.  相似文献   

20.
The differences between δ18O in throughfall and open rainfall were studied for 16 selected spring and summer storms in deciduous, pine and spruce forests in central Pennsylvania, USA. Throughfall δ18O averaged 0.17, 0.32 and 0.24%o greater than δ18O of open rainfall for all storms at the deciduous, pine and spruce sites, respectively. Throughfall 18O enrichment was greater in low intensity spring rainfall events than higher intensity growing season storms and greater in the coniferous stands than the deciduous hardwood stand. Maximum throughfall 18O enrichment of l.61%o occurred in the spruce forest during one spring event. The differences between rainfall and throughfall 18O observed in this study for individual storm events may have important implications for isotope flow separation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号