首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
The west‐central part of South Africa's Free State Province falls within the transition zone between South Africa's sub‐humid, temperate grasslands to the east, and the semi‐arid Karoo and arid Kalahari to the south and west, respectively. The area is characterized by low rainfall (typically 500 mm or less) with high variability, but environmental conditions allow widespread dryland commercial agriculture (maize, sunflowers and stock farming). However, human activity promotes wind erosion and the area is susceptible to dust emissions. This study is the first to quantify the degree of wind erosion on the agricultural soils in the region under prevailing winter to spring climatic conditions and land management practices. Using arrays of cup anemometers, dust deposition traps and saltation impact sensors (Safires), measurements were made of the key erosivity and erodibility drivers that control the degree of wind erosion. Results demonstrate that significant quantities of dust are mobilized, particularly during the months of September and October. Thresholds of wind erosion are shown to respond particularly closely to changes in surface and aerodynamic roughness (z0) with the amount of collected dust correlating well with measures of wind erosivity that weight the impact of higher wind speeds. Given the importance of surface roughness in controlling erosion thresholds, results show that the opportunity exists for well designed farming practices to control wind erosion. However, it is likely that climatically driven environmental change will impact on some of the identified controls on erosion (wind power, moisture availability) with the result that the wind erosion hazard is likely to increase within this marginal environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Clay-rich deposits are usually considered as hard materials to be eroded by wind.Data from both surface monitoring and field survey at the dry-up bottom of Aiby Lake present thatclay-rich lacustrine deposits are easily broken down and eroded away by wind in the seasonalalternation process under the natural arid environment, and are the significant source of air dust.The surface of the clay-rich deposits is broken and softened by the freezing-and-thawing action inwinter season and/or by salt and alkali action with precipitation. Impact of wind-input particles andplow of plant branches with wind force drive the clay-rich sediments moving. Wind picks up theclay pebbles and repeats the impaction further-ward onto the dry-up surface. Tremendous finematerials, including soft salts, are contributed to air dust, and transported in long distance.  相似文献   

3.
The geomorphological effects of cattle on streambanks in a humid region, which have consequent potential effects on water quality, are examined. Field observations suggest that cattle are important agents in causing streambanks to erode, but so many variables are involved that it is difficult to isolate the role of cattle. Instead, an empirical approach based on long-term controlled experiment was adopted along a small perennial stream in the Central Basin of Tennessee. The results showed that uncontrolled grazing caused about six times as much gross bank erosion as occurred on the protected control stretch. However, most of this difference was due to breakdown of banks by trampling and consequent erosion, rather than by bank scour caused by removal of bank vegetation by grazing. That is, bank vegetation alone did not appear to be a primary control. A relatively inexpensive grade-control structure reduced the gross bank erosion by about 50 per cent. The rapid destruction of streambanks observed in this study suggests that reduction of geomorphic resistance by uncontrolled stock access to streambanks has been an important factor in the stream widening that has taken place during historical time in the eastern United States.  相似文献   

4.
Arroyo cutting that began in the American Southwest in the 1880s is associated with sudden runoff, a circumstance characteristic of this semiarid region in which occasional intense rainfall exceeds the capacity of the ground to absorb water. This report describes two arroyos in an area of moderately dissected bolson deposits southwest of Santa Fe, Cañada de la Cueva and Pueblo Cañon, where arroyo cutting since 1970 has been closely related to runoff from summer rain. The area is vegetated chiefly by grama grass and scattered juniper. Cutting is monitored by repeated surveys of channel floors, cross-sections, and headcuts, and by repeated photographs taken as stereopairs. Rainfall and discharge are measured simultaneously in 5-minute intervals by dual digital recorders at a gauging station on Cañada de la Cueva (drainage area 4.64 km2). Discharge has been as much as 18.2 m3/s from rainfall of 25.2 mm. The maximum 15-minute intensity for this storm was 64.0 mm/hr, and runoff was 7.9 mm. The flood peak arrived in 20 minutes, by which time 80 per cent of the rain had fallen, and the flow subsided to a tenth of its maximum in less than an hour. This storm at Pueblo Cañon (drainage area 13.3 km2 above the place of measurement) resulted in an estimated discharge of 140 m3/s, and features produced by hail on the channel floor suggest that the duration of flow could have been as brief as 30 minutes. Observed increments of headward cutting at Cañada de la Cueva range from 0.28 m for 1.8 mm of runoff to 4.9 m for 12 mm of runoff. Aggregate cutting in 5 years has been as much as 13.7 m, resulting in erosion of 570 m3 of alluvium. Headward cutting near the mouth of Pueblo Cañon has been observed in increments of 10.3, 14.6, and 20.7 m, for an aggregate of 45.6 m, as measured from 1971 to 1974. This cutting removed 1,770 m3 of alluvium.  相似文献   

5.
Time patterns of karst denudation in northwest Georgia (U.S.A.) were investigated at three spring sites for 12 months and at five stream sites for 10 years. Rainfall was evenly distributed and showed no significant seasonality. At the springs, as well as the streams, water hardness was largely controlled by discharge. At the springs, soil pCO2 and water pH were strongly correlated (r + -0·69 to -0·83). Solute transport in spring waters was highly seasonal, with two conduit flow springs removing more limestone in the winter, and the diffuse flow spring removing more during the growing season. At the stream sites, most denudation occurred during the winter and spring seasons, and least during the summer. Fourier analysis showed that variations in denudation occur on deterministic (long-wave) as well as stochastic (shortwave) time scales. As contributing variables, discharge varied in short-wave and long-wave cycles, whereas soil pCO2 showed only a long-wave cycle. The 12 month deterministic cycles were the most important, with changes in discharge taking precedence over soil pCO2. Time series regression explains up to 69 per cent of changes in denudation through rain and soil pCO2. Time cycles in available water are the key controlling factor of denudation, and amounts of available soil CO2 may not be as important in the temporal patterns of karst downwearing as has been believed previously.  相似文献   

6.
The Edwards artesian aquifer occurs in cavernous limestones of Cretaceous (Albian) age within the Balcones fault zone in south-central Texas. The major recharge and discharge zones of the aquifer are contained within the upper reaches of three river systems: the Nueces, the San Antonio, and the Guadalupe. Within these watersheds, recharge dominates in the semiarid Nueces basin to the west while most discharge occurs farther east from wells in the subhumid San Antonio basin and from springs in the subhumid Guadalupe basin. This long-distance transfer of ground water (up to 240 km) is a result of several factors: depositional and early diagenetic history of the limestone host rock, geometry and magnitudes of fault displacement, and physiographic responses to faulting. The loci of greatest discharge from the aquifer occur in an area that was exposed subaerially with concomitant porosity enhancement due to dissolution of limestone during late Early Cretaceous time. This area also was subjected to the greatest fault displacement during Miocene time. Thus, faults and associated joints superimposed additional avenues for porosity and permeability development onto an area that already had considerable secondary porosity. Further determinants on aquifer properties resulted from late Tertiary and Quaternary drainage evolution in response to faulting along the Balcones trend. The strike of the fault zone lay at acute angles to the courses of the main trunk streams in the ancestral Guadalupe and San Antonio River systems, whereas in the Nueces basin the trend of the fault zone was normal to the courses of the main streams. Thus, as a fault-line scarp began to form in the eatern basins, scarp-normal streams were incised rapidly into northwest-trending canyons. These steep-gradient streams captured the eastward-flowing major streams in the easten watersheds. These pirate streams incised into the aquifer at the lowest topographic levels within the region because of: 1. The sudden acquisition of extensive catchment areas in a subhumid area; and 2. Steep stream gradients that reflected the larger fault displacement in the east. The low topographic points of discharge became the loci of major springs. Recharge is dominant in the Nueces basin mainly because streams cross permeable limestone units at higher topographic levels than in the San Antonio and Guadalupe basins. The topographic characteristics of the Nueces watershed resulted from a combination of diverse factors: lesser fault displacement, no major stream piracy, and less vigorous erosion because of a semiarid climate.  相似文献   

7.
Many of the world's beaches have recently been eroding, even on progradational landforms. This study uses the sediment budget approach to identify and rank the causes of the hazard along Sandy Hook spit where the primary recreational beach has been eroding at about 10 m/yr since 1953 and 23 m/yr in the 1970s. Large spatial variations in longshore sediment transport are found to result from differences in refracted wave energies and intersegmental sediment transport. Erosion results from a 60 per cent deficit (-270,000 m3/yr) in the sediment budget that is primarily caused by (1) refraction induced locally high waves that increase the transport rate by 100,000 m3, and (2) shore protection structures that have lessened the longshore sediment inputs by an additional 100,000 m3/yr. A storm index is presented to analyse secular climatic variation. It suggests that the annual sediment transport rate may vary by as much as ±50 per cent about the mean and that recently, above normal storm wave energies are responsible for about 60,000 m3/yr of the budget deficit. Rising sea levels and storm overwash each account for only about one per cent of the sediment loss. Pulses of sediment, induced by accelerated erosion at the feeder beach locale of spit segments, are found to move downdrift. They alter the geomorphology of the spit through episodic extensions of the spit segments with lag times exceeding one year per segment.  相似文献   

8.
刘峥  石树中  沈建文 《地震工程学报》2008,30(3):245-248,254
以美国西部强震观测数据资料为基础,分别建立基岩和厚土层上的峰值加速度衰减规律,探讨厚土层对基岩峰值加速度的放大作用.结论为:平均而言,对美国西部这样的厚土层峰值加速度放大作用不大.但基岩峰值加速度越大,厚土层放大作用越小;震中距越远,厚土层放大作用越大.  相似文献   

9.
Since the beginning of the Cenozoic period several hundreds of metres of the sedimentary cover have been removed from the Colorado Plateau. Palaeoclimatic considerations show that the Colorado Plateau has been dominated by dry climates throughout the Cenozoic with the possible exception of the early Palaeocene. Today in the still prevailing arid climate, which strongly accentuates differences in rock resistance, the relief shows a structurally controlled cuesta scarp topography in the slightly deformed strata of alternating resistance. In examining whether the denudational efficiency of scarp retreat was sufficient to account for the wide erosional gaps in the sedimentary cover, rates of scarp retreat were determined by using the information of dated volcanic material and by applying a new method, which calculates the amount of retreat from the width of beheaded valleys of known age. Rates of retreat range from 0·5 to 6·7 km my?1. The results show that the rates of retreat are controlled by the thickness and resistance of the caprocks. A model of Cenozoic scarp retreat demonstrates that the rates of recession calculated for the scarps in Upper Cretaceous rocks were sufficient to bring them into their present positions from the centre of the Monument Uplift on the central Colorado Plateau. The late Eocene positions of the cliffs in the Early Tertiary formations give an indication of their maximal extent. After the Upper Cretaceous sediments had been removed from the uplifts, erosion cut through successively older rocks, and activated scarps in stratigraphically lower positions. Scarp retreat can operate simultaneously and independently at different levels, which enabled this erosional mechanism to remove great proportions of the sedimentary cover of the Colorado Plateau during the Cenozoic.  相似文献   

10.
Discharge characteristics in six adjacent mountainous watersheds in northern New Mexico, U.S.A., vary substantially between basins underlain by different lithologies. Relatively resistant gneisses and granites underlie two basins (drainage areas: 43 and 94 km2) that have high unit discharge (0·010 to 0·14 m3s?1 km?2), high bankfull discharge, and sustained high discharge. Less resistant sandstones and shales underlie four basins (drainage areas: 96 to 215 km2) that have relatively low unit discharge (0·001 to 0·005 m3s?1 km?2), relatively low bankfull discharge, and peak discharges that are not sustained as long as those in the crystalline terrane. Analysis of snowmelt-runoff water budgets suggests that three factors control hydrologic conditions in the basins. First, area-elevation distributions appear to control the timing and amounts of water input. These distributions probably reflect the erosional resistance of the different lithologies. Second, lithology appears to control runoff production in areas having minor amounts of storage. Third, glacial deposits in headwater regions control discharge duration and timing via storage and return flow releases. The amount of return flow released by glacial deposits, however, is probably controlled by the permeability of underlying bedrock. Therefore it appears that the duration, timing, and magnitude of discharge events in the study area are controlled both directly and indirectly by lithology. Stream power and shear stress estimates derived from bankfull discharge and bed-material size data suggest that higher bedload transport rates and larger bedload particle sizes exist in streams draining crystalline rocks than in streams draining sedimentary terrane. It appears that source-area lithology, by controlling discharge production, also influences stream power, bedload transport capabilities, and therefore total amounts of bedload transport.  相似文献   

11.
Debris flows are one of the most important processes which influence the morphology of channels and valley floors in the Oregon Coast Range. Debris flows that initiate in bedrock hollows at heads of first-order basins erode the long-accumulated sediment and organic debris from the floors of headwater, first- and second-order channels. This material is deposited on valley floors in the form of fans, levees, and terraces. In channels, deposits of debris flows control the distribution of boulders. The stochastic nature of sediment supply to alluvial channels by debris flows promotes cycling between channel aggradation which results in a gravel-bed morphology, and channel degradation which results in a mixed bedrock- and boulder-bed morphology. Temporal and spatial variability of channel-bed morphology is expected in other landscapes where debris flows are an important process.  相似文献   

12.
We describe two small scoria cone volcanoes, Hidden Cone and Little Black Peak (ages between ~320–390 ka), in the Southwestern Nevada Volcanic Field and discuss their eruption mechanisms and inferences about their plumbing systems. Cone-forming pyroclastic deposits are consistent with eruptive styles ranging from Strombolian to violent Strombolian, and lavas emanated from near the bases of the cones. The volcanoes are monogenetic (rather than polycyclic, as allowed by previous geomorphic interpretations). Vents at each volcano appear to coincide with pre-existing normal faults, consistent with observations at older, deeply eroded volcanoes in the region. The existence of these two volcanoes on a topographically high area (particularly Hidden Cone) provides evidence for short feeder dike lengths (~500 m at the surface). We infer that this short length reflects the small length scale of the mantle source region that was tapped to feed each volcano. Editorial responsibility: J Stix  相似文献   

13.
A one-day field investigation on an unvegetated backbeach documents the importance of surface sediment drying to aeolian transport. Surface sediments were well sorted fine sand. Moisture content of samples taken in the moist areas on the backbeach varied from 2·9 to 9·2 per cent. Lack of dry sediment inhibited transport prior to 08:50. By 09:10 conspicuous streamers of dry sand moved across the moist surface. Barchan-shaped bedforms, 30 to 40 mm high and composed of dry sand (moisture content <0·10 per cent), formed where sand streamers converged. The surface composed of dry sand increased from 5 per cent of the area of the backbeach at 09:50 to 90 per cent by 12:50 Mean wind speeds were beetween 5·6 and 8·6 m s−1 at 6 m above the backbeach. Corresponding shear velocities were always above the entrainment threshold for dry sand and below the threshold for the moist sand on the backbeach. Measured rates of sand trapped (by vertical cylindrical traps) increased during the day relative to calculated rates. The measured rate of sand trapped on the moist foreshore was higher than the rate trapped on the backbeach during the same interval, indicating that the moist foreshore (moisture content 18 per cent) was an efficient transport surface for sediment delivered from the dry portion of the beach upwind. Measured rates of sand trapped show no clear relationship to shear velocities unless time-dependent surface moisture content is considered. Results document conditions that describe transport across moist surfaces in terms of four stages including: (1) entrainment of moist sediment from a moist surface; (2) in situ drying of surface grains from a moist surface followed by transport across the surface; (3) entrainment and transport of dry sediment from bedforms that have accumulated on the moist surface; and (4) entrainment of sand from a dry upwind source and transport across a moist downwind surface. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号