首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The automated spatial estimation of the hillslope runoff dynamics is used as a valuable tool for the estimation of the travel time distribution (flow time), a major factor for the hydrologic prediction in ungauged basins. In fact, while the flow time function is usually obtained by rescaling the flow paths with constant channel and hillslope velocities, in this work a spatially distributed kinematic component, as a function of terrain features and in particular slope and land use, is implemented and its influence on the hydrologic response is tested by means of the Width Function Instantaneous Unit Hydrograph (WFIUH) framework. Hillslope surface flow velocities are evaluated by applying different uniform flow formulas within an automated DEM-based (terrain analysis) algorithm. A comparison test of the performances of the Manning, Darcy, Maidment and Soil Conservation Service uniform flow equations is performed for several case studies in Italy pertaining to different climatic and geomorphic conditions. Results provide new insights for a better understanding of the flow time function also introducing a more parsimonious and physically-based calibration scheme of the WFIUH.  相似文献   

2.
《水文科学杂志》2012,57(1):127-137
ABSTRACT

Determining the catchment design peak flow is crucial in hydrological practice. In this paper, the conceptual rainfall–runoff model EBA4SUB (Event-Based Approach for Small and Ungauged Basins) was applied in six catchments in Iran. The aims were to test EBA4SUB in reconstructing runoff hydrographs for the investigated case studies and to provide a suitable alternative for the review and updating of design peak flow estimation in Iran. The EBA4SUB output was compared with previous studies on selected catchments. The results show, for all case studies, a large variability in the peak flow values; the EBA4SUB model gave flow values similar to the other methodologies. The EBA4SUB model can be recommended for the following reasons: (i) it minimizes the subjectivity of the modeller. (ii) its modules are based on state-of-the-art procedures, which have been appropriately optimized for ungauged basins; and (iii) it furnishes the whole design flood hydrograph.  相似文献   

3.
A Bayesian Geostatistical Approach to evaluate unknown upstream flow hydrographs in multiple reach systems is implemented. The methodology was, firstly, tested through three synthetic examples of river confluences, that differ in the available data, boundary conditions and number of the estimated inflow time series. Input discharge hydrographs were routed downstream by means of the widely known HEC-RAS river analysis system to obtain the downstream stage hydrographs used as known observations for the reverse procedure. In almost all cases, the observed water levels were corrupted with random errors to highlight the reliability of the methodology in preventing instabilities and overfitting. Then the procedure was applied to the real case study of the Parma–Baganza river confluence located at the city of Parma (Italy) to assess the tributary Baganza River inflow hydrograph (supposed completely ungauged) using water level data collected downstream on the main reach. The results show that the methodology properly reproduces the unknown inflows even in presence of errors affecting the downstream water levels. The practical applicability of the proposed approach is also demonstrated in complex river systems.  相似文献   

4.
The braiding intensity and dynamics in large braiding rivers are well known to depend on peak discharges, but the response in braiding and channel–floodplain transformations to changes in discharge regime are poorly known. This modelling study addresses the morphodynamic effects of increasing annual peak discharges in braiding rivers. The study site is a braiding reach of the Upper Yellow River. We estimated the effects on the larger‐scale channel pattern, and on the smaller‐scale bars, channel branches and floodplains. Furthermore, we determined the sensitivity of the channel pattern to model input parameters. The results showed that the dominant effect of a higher peak discharge is the development of chute channels on the floodplains, formed by connecting head‐cut channels and avulsive channels. Widening of the main channel by bank erosion was found to be less dominant. In addition, sedimentation on the bars and floodplains increased with increasing peak discharge. The model results also showed that the modelled channel pattern is especially sensitive to parametrization of the bed slope effect, whereas the effect of median grain size was found to be relatively small. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Eroding channels can usually be characterized by a power relationship between channel width (W) and channel discharge (Q). This paper examines the WQ relation using a recently developed channel junction approach to extend the validity of the WQ relation and to develop a procedure for estimating the WQ exponent and proportionality coefficient. Rill and gully channel data from the literature, and new data collected in different badland areas and in a few forest mountain streams, are analysed. Analysis shows that the WQ relation for channel width collected in badlands and forests agrees with trends observed for cropland. The exponent increases with increasing channel width in a continuous fashion rather than in a step‐like way and tends to a maximum whose value ranges between 0·5 and 0·6. The proportionality coefficient can be split into two terms, one expressing the case in which an eroding channel can broaden, the other reflecting the difficulties in removing the less erodible clods or rock fragments from the channel bed. Its splitting allows the development of a more correct form of the WQ relation in agreement with modern approaches of channel geometry: one part has the dimension of a discharge and makes the power base dimensionless, while the other brings the dimension of a length, needed for the channel width, into the WQ relation. The interpretation of the two constants is supported by data collected in rainfall‐runoff simulation experiments conducted in the field. Values characterizing the two constants in some environments are also given. Nevertheless the approach is not sufficiently parameterized yet to be of practical use (e.g. in models or for estimating peak discharge in areas where rill channels have formed). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Large errors in peak discharge estimates at catchment scales can be ascribed to errors in the estimation of catchment response time. The time parameters most frequently used to express catchment response time are the time of concentration (TC), lag time (TL) and time to peak (TP). This paper presents a review of the time parameter estimation methods used internationally, with selected comparisons in medium and large catchments in the C5 secondary drainage region in South Africa. The comparison of different time parameter estimation methods with recommended methods used in South Africa confirmed that the application of empirical methods, with no local correction factors, beyond their original developmental regions, must be avoided. The TC is recognized as the most frequently used time parameter, followed by TL. In acknowledging this, as well as the basic assumptions of the approximations TL = 0.6TC and TCTP, along with the similarity between the definitions of the TP and the conceptual TC, it was evident that the latter two time parameters should be further investigated to develop an alternative approach to estimate representative response times that result in improved estimates of peak discharge at these catchment scales.
Editor Z.W. Kundzewicz; Associate editor Qiang Zhang  相似文献   

7.
For various hydrological applications such as flood control projects, a knowledge of stage–discharge relationship is of particular interest to river engineers. Stage–discharge curves in compound channels cannot be easily predicted in comparison with single channels due to their 3D characteristics of flow. In this paper, the concept of cross‐sectional isovel contours is used for estimation of stage–discharge curves in compound channels. The multivariate Newton's method is applied to the difference between the observed and estimated data to optimize the exponent values of the governing parameters. The accuracy of the proposed model is tested successfully against available experimental results, which are taken from the Flood Channel Facility (FCF) laboratory. Then the results are compared with the Single and Divided Channel Methods (SCM and DCM, respectively), the Weighted Divided Channel Method (WDCM), the exchange discharge method (EDM), and the Coherence Method (COHM). The average values of mean absolute percentage error (MAPE) and normalized root mean square error (NRMSE) in discharge estimation based on each referenced section at any level for 6 sections of the experimental cases are within 3.1% and 0.023, respectively. The biggest advantage of the proposed method is its inherent simplicity, which does not need any calibration.  相似文献   

8.
Abstract

We conducted a PUB (predictions in ungauged basins) experiment looking at hydrology and crop dynamics in the semi-arid rural Mod catchment in India. The experiment was motivated by the aims (a) to develop a coupled eco-hydrological model capable of analysing land-use strategies concerning crop water need, erosion protection, crop yield and resistivity against droughts and floods, and (b) to assess the feasibility of a strategy for collecting the necessary data in a data-scarce region. Our experiment combines parsimonious data assessment and eco-hydrological model coupling at the lower mesoscale. Linking bottom-up sampling of functionally representative soil classes and top-down regionalization based on spectral properties of the same resulted in a comprehensive distributed data basis for the model. A clear focus on the dominating processes and the catena as the organizing landscape element in the given environmental setting enabled this. We employed the WASA (Water Availability in Semi-Arid environments) model for uncalibrated process-based water balance modelling and integrated a crop simulation subroutine based on the SWAP (Soil Water Atmosphere Plant) model to account for crop dynamics, feedbacks and yield estimation. While we found the data assessment strategy and the hydrological model application largely feasible, in terms of its accounting for scale, processes and model concepts, the simulation of feedbacks with crops was problematic. Contributing to the PUB issue, more general conclusions are drawn concerning spatially-distributed structural information and uncalibrated modelling.
Editor Z.W. Kundzewicz; Associate editor F. Hattermann  相似文献   

9.
Abrahams' comment relates meander length to channel cross-section shape and recurrence interval so that meander length can be both directly and inversely proportional to rock resistance. This reply notes that either meander length is directly proportional to rock resistance or it is not; one cannot have it both ways. Many Appalachian Valley and Ridge bedrock meanders are shown to be the same size as alluvial meanders, and appear to be somewhat underfit. A hypothesis is proposed where modest discharge increases may have accelerated bedrock meander cutting although present streams remain capable of slowly cutting the meanders.  相似文献   

10.
There is still wide uncertainty about past flash‐flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash floods and illustrates a case in an ungauged catchment in the Spanish Central System. The use of dendrogeomorphic evidence (i.e. scars on trees) together with the combined use of a two‐dimensional (2D) numerical hydraulic model and a terrestrial laser scan (TLS) has allowed estimation of peak discharge of a recent flash flood. The size and height distribution of scars observed in the field have been used to define three hypothetical scenarios (Smin or minimum scenario; Smed or medium scenario; and Smax or maximum scenario), thus illustrating the uncertainty involved in peak‐discharge estimation of flash floods in ungauged torrents. All scars analysed with dendrogeomorphic techniques stem from a large flash flood which took place on 17 December 1997. On the basis of the scenarios, peak discharge is estimated to 79 ± 14 m3 s?1. The average deviation obtained between flood stage and expected scar height was ? 0·09 ± 0·53 m. From the data, it becomes obvious that the geomorphic position of trees is the main factor controlling deviation rate. In this sense, scars with minimum deviation were located on trees growing in exposed locations, especially on unruffled bedrock where the model predicts higher specific kinetic energy. The approach used in this study demonstrates the potential of tree‐ring analysis in palaeohydrology and for flood‐risk assessment in catchments with vulnerable goods and infrastructure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater discharge flux into rivers (riverine groundwater discharge or RGD) is essential information for the conservation and management of aquatic ecosystems and resources. One way to estimate area-integrated groundwater discharge into surface water bodies is to measure the concentration of a groundwater tracer within the water body. We assessed groundwater discharge using 222Rn, a tracer common in many surface water studies, through field measurements, surface water 222Rn mass balance model, and groundwater flow simulation, for the seldom studied but ubiquitous setting of a flooding river corridor. The investigation was conducted at the dam-regulated Lower Colorado River (LCR) in Austin, Texas, USA. We found that 222Rn in both the river water and groundwater in the river bank changed synchronously over a 12-hour flood cycle. A 222Rn mass balance model allowed for estimation of groundwater discharge into a 500-m long reach of the LCR over the flood. The groundwater discharge ranged between negative values (indicating recharge) to 1570 m3/h; groundwater discharge from groundwater flow simulations corroborated these estimates. However, for the dynamic groundwater discharge estimated by the 222Rn box model, assuming whether the groundwater 222Rn endmember was constant or dynamic led to notably different results. The resultant groundwater discharge estimates are also highly sensitive to river 222Rn values. We thus recommend that when using this approach to accurately characterize dynamic groundwater discharge, the 222Rn in near-stream groundwater should be monitored at the same frequency as river 222Rn. If this is not possible, the 222Rn method can still provide reasonable but approximate groundwater discharge given background information on surface water-groundwater exchange time scales.  相似文献   

12.
王洪祥 《湖泊科学》1992,4(3):44-53
本文阐述了在符合明渠非恒定流一维定床条件的水文测站,应用变化的特征差分格式,将两断面实测水位过程线推算为流量过程线的原理、方法和应用实例,对理论推算的流量过程和实测流量过程进行了比较分析。从泗洪站和运河站的成果看出,推流和实测过程线基本吻合,精度较高。因此可以明显看出,应用本法推流,不但安全可靠,具有节约人力、物力等经济效益,还可提高测验精度、防止高洪期流量的错测、漏测,保证洪水资料的连续和完整。在湖泊水量平衡计算中,同样可以借助两组水尺获得的水位资料进行推流,无需设置专用流量站。  相似文献   

13.
The fluid flow system can be described by an equivalent electromagnetic system. In this paper a successful application of the Biot–Savart law in hydraulics is presented. Similarity between the magnetic field of a current wire and the isovel contours in a channel cross-section is used to derive the isovel patterns in an open or closed channel. Having obtained the normalized isovel contours, one can easily obtain the discharge using a single point of velocity measurement at the conduit cross-section. The estimated discharge, based on measured points and the predicted isovels on the upper half of the flow depth away from the boundaries was within ±5% of the measured and much better in comparison to the prediction of one- and two-point methods. Furthermore, the model was applied to real life channels. The prediction of the water surface velocity for the River Unon in Japan and depth-averaged velocity for the Severn River in UK show a good agreement with the measured data and analytical results.  相似文献   

14.
The paper presents an analysis of 17 long annual maximum series (AMS) of flood flows for Swiss Alpine basins, aimed at checking the presence of changes in the frequency regime of annual maxima. We apply Pettitt's change point test, the nonparametric sign test and Sen's test on trends. We also apply a parametric goodness‐of‐fit test for assessing the suitability of distributions estimated on the basis of annual maxima collected up to a certain year for describing the frequency regime of later observations. For a number of series the tests yield consistent indications for significant changes in the frequency regime of annual maxima and increasing trends in the intensity of annual maximum discharges. In most cases, these changes cannot be explained by anthropogenic causes only (e.g. streamflow regulation, construction of dams). Instead, we observe a statistically significant relationship between the year of change and the elevation of the catchment outlet. This evidence is consistent with the findings of recent studies that explain increasing discharges in alpine catchments with an increase in the temperature controlling the portion of mountain catchments above the freezing point. Finally, we analyse the differences in return periods (RPs) estimated for a given flood flow on the basis of recent and past observations. For a large number of the study AMS, we observe that, on average, the 100‐year flood for past observations corresponds to a RP of approximately 10 to 30 years on the basis of more recent observation. From a complementary perspective, we also notice that estimated RP‐year flood (i.e. flood quantile (FQ) associated with RP) increases on average by approximately 20% for the study area, irrespectively of the RP. Practical implications of the observed changes are illustrated and discussed in the paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Turbulent flow in a meandering channel is computed with two Computational Fluid Dynamics (CFD) codes solving the Navier–Stokes equations by employing different turbulence closure approaches. The first CFD code solves the steady Reynolds-Averaged Navier–Stokes equations (RANS) using an isotropic turbulence closure. The second code is based on the concept of Large Eddy Simulation (LES). LES resolves the large-scale turbulence structures in the flow and is known to outperform RANS models in flows in which large-scale structures dominate the statistics. The results obtained from the two codes are compared with experimental data from a physical model study. Both, LES and RANS simulation, predict the primary helical flow pattern in the meander as well as the occurrence of an outer-bank secondary cell. Computed primary as well as secondary flow velocities are in reasonably good agreement with experimental data. Evidence is given that the outer-bank secondary cell in a meander bend is the residual of the main secondary cell of the previous bend. However, the RANS code, regardless of the turbulence model employed, overpredicts the size and strength of the outer-bank secondary cell. Furthermore, only LES is able to uphold the outer-bank second secondary cell beyond the bend apex until the exit of the bend as turbulence anisotropy contributes to its persistence. The presence of multiple secondary cells has important consequences for the distribution of shear stresses along the wetted perimeter of the channel, and thereby the sediment transport in meandering channels. Consequently, even though LES is expected to compute the bed-shear stresses along the wetted perimeter of the channel with a higher degree of accuracy than the RANS model, comparisons between LES and RANS computed wall shear stresses agree well. These findings are useful for practitioners who need to rely on RANS model predictions of the flow in meandering channels at field scale.  相似文献   

16.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
18.
基于中国地震动参数区划图、华北平原地震带和汾渭地震带地震活动性参数、华北地区地震动参数衰减关系,计算北京地区50年、70年、100年不同超越概率水准下基岩峰值加速度.并分析不同年限各超越概率水准下的峰值加速度与该年限超越概率10%的峰值加速度比值,发现各计算格点的比值普遍偏小,按照当前抗震设防标准,所考虑的地震作用偏于保守且安全.  相似文献   

19.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

20.
Over the last century, geomorphic processes along the Middle Rio Grande have been altered by flood control and bank stabilization projects, intensified land and water use, and climate change. In response to potential risks to infrastructure and ecological integrity, recent (1985–2008) adjustment was investigated and historic (1918–1985) changes in Rio Grande channel planform through the Albuquerque, New Mexico, area were reviewed, especially in relation to changes in annual peak discharge and river engineering measures. Using a GIS, channel characteristics were digitized from georeferenced photographs and analyzed with particular attention to quantifying potential measurement error and its propagation. Error associated with average channel widths and channel area ranged between 4 and 13%. For smaller polygons, e.g. islands, error was higher (11 to 40% for width and >200% for area) because width error is large relative to polygon width. Between 1918 and 1963, average channel widths decreased 8 m/yr, from 516 ± 67 m to 176 ± 7 m, mostly due to decreasing peak flows and the implementation of flood control and other engineering measures. From 1985 to 2008, widths decreased 0·7 m/yr, from 176 ± 23 m to 146 ± 5 m, accompanied by an increase in vegetated island area which largely coincided with low flow periods. Narrowing was concentrated at tributary inputs and in the upstream part of the reach, where bedload trapping by Cochiti Dam has caused degradation. Bank protection structures and dense vegetation limit bank erosion in the reach, but erosion is significant where expanding islands, incision, and increased meandering force water against banks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号