首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
墙背粗糙导致墙后土体应力方向发生偏转,目前,黏性土中考虑土体应力方向偏转对土压力影响的研究较少。为此,本文首先在探讨墙后土体主应力偏转规律的基础上,采用沿主应力迹线分层形成曲线薄层单元。然后,通过分析曲线薄层单元的受力情况,建立曲线薄层单元的静力平衡方程,推导出平动模式下黏性土体土压力沿墙高分布的公式,进而获得黏性土土压力分析新方法。最后,将本文方法与实测结果和现有理论进行对比验证和参数分析,验证本文方法的可靠性和合理性。研究结果表明:考虑墙土摩擦效应的计算结果更能准确反映黏性土体土压力沿墙高的分布规律;土压力大小随黏聚力增大而减小;随着墙土摩擦角的增大,土压力合力逐渐减小,作用点高度缓慢升高。  相似文献   

2.
刘新喜  李彬  王玮玮  贺程  李松 《岩土力学》2022,43(5):1175-1186
为了研究挡墙后有限土体的主动土压力,以墙后无黏性土体为研究对象,假定破裂面为通过墙踵的平面,且在挡墙平动模式下,墙后土体形成圆弧形小主应力拱。采用沿小主应力迹线分层的方法,将挡墙后土体划分为若干个圆弧形曲线薄层单元,考虑了单元体上下表面应力分布的不均匀性,提出了一种有限土体挡墙主动土压力计算方法,给出了主动土压力合力及其作用点高度的表达式,并验证了该方法的正确性。研究结果表明:采用曲线薄层单元法可以准确考虑单元体复杂的受力情况,能更好地反映挡墙后有限土体主动土压力的变化规律;有限填土时主动土压力沿墙高 呈非线性分布,土压力先随着土体深度增加呈单调递增趋势,然后在接近墙底位置处呈单调递减趋势。分析参数敏感性时取不同土体宽高比与墙背粗糙程度对挡墙主动土压力分布及合力作用点高度进行分析,结果表明:随着土体宽高比n的增大,主动土压力值逐渐增大,土压力分布曲线非线性越来越明显,合力作用点高度逐渐降低且恒大于 。当 0.71时,均趋于稳定。可将 0.71作为有限土体与半无限土体的临界宽高比。随着摩擦角 的增大,主动土压力值逐渐减小,土压力分布曲线非线性越来越明显,合力作用点高度逐渐增大且恒大于 。  相似文献   

3.
填土水平墙背竖直光滑的挡墙,墙后土体处于以自重应力和水平应力为主应力的应力状态。实际工程中,挡墙背面与土体存在一定的摩擦及黏结力作用致使挡墙附近土体中的主应力发生偏转,此时,经典朗肯土压力理论不再适用。本文对挡墙附近土中的主应力状态进行旋转处理,通过分析墙后填土中应力状态摩尔圆,得到了考虑墙土摩擦和黏结力作用的黏性填土挡墙主被动土压力计算公式,分析了填土内摩擦角与墙土摩擦角对土压力的影响,使用算例将本文方法所得结果与现有黏性土土压力计算方法所得结果进行了对比分析。结果表明,朗肯土压力公式是本文所得计算公式的特例;随着墙土摩擦角和内摩擦角的增加,被动土压力逐渐加快增大;主动土压力随着内摩擦角的增加而减小;当内摩擦角较小时,主动土压力随着墙土摩擦角的增大不断减小,当内摩擦角较大时,主动土压力随着墙土摩擦角的增大先减小后增大;土内摩擦角的影响大于墙土摩擦的影响;相对于现有方法计算结果,本文方法所得主动土压力较大,被动土压力较小,墙土摩擦越大,2种方法所得结果的差值越大,土黏聚力还会加大这一差值。本文方法考虑了墙背土体主应力方向偏转的客观事实,所得计算结果将更符合实际情况。  相似文献   

4.
狭窄基坑平动模式刚性挡墙被动土压力分析   总被引:2,自引:0,他引:2  
应宏伟  郑贝贝  谢新宇 《岩土力学》2011,32(12):3755-3762
对于地铁车站、地下管道沟槽等狭窄基坑,其被动区土体宽度有限,不满足半无限体的假定,采用经典的库仑、朗肯土压力理论计算挡墙被动土压力是不合适的。首先建立了无黏性土中狭窄基坑刚性挡墙的有限元分析模型,研究了挡墙相对平移时不同宽度土体的被动滑裂面的分布规律;借鉴库仑平面土楔假定,建立了狭窄基坑刚性平动挡墙被动土压力的理论计算模型,推导了被动极限状态下滑裂面倾角及被动土压力系数的解析公式;再采用水平薄层单元法,得到了被动土压力分布、土压力合力作用点高度的理论公式。结合算例,深入研究了这种工程背景下挡墙被动滑裂面倾角的影响因素,以及被动土压力合力、土压力分布及合力作用点位置与经典库仑土压力理论的差别,与数值计算结果的对比验证了该理论方法的合理性。研究发现,当被动区土体宽度小于满足半无限体的临界值、且墙土摩擦角大于0时,被动滑裂面倾角大于传统库仑被动滑裂面倾角,被动土压力大于经典库仑解,合力作用点高度则小于库仑解,且基坑越窄,墙土摩擦角越大,其差别越大。  相似文献   

5.
地震条件下挡土墙主动土压力及其分布的统一解   总被引:3,自引:0,他引:3  
孙勇 《岩土力学》2012,33(1):255-261
在非地震主动土压力公式的基础上,用微分薄层法给出了地震条件下主动土压力公式,其中填土面倾斜、墙背倾斜、填土为黏性土、墙背与填土间同时存在凝聚力c和内摩擦角? 作用、墙后破裂体存在水平向和竖向的地震加速度,目前所见的地震情况下和非地震情况下的主动土压力均是此公式的特例。对上述同一条件下的挡墙用过墙踵的整块破裂体作静力平衡分析(如库仑分析),得到的总土压力与文中微分薄层法得到的总土压力大小相等,但微分薄层法作用点位置明显增加,研究表明:设计抗震和非抗震各类挡墙时要引起足够的重视。  相似文献   

6.
为研究挡墙变位模式以及墙后填土宽度对无黏性有限土体主动土压力的影响,在不同墙后填土宽度条件下分别开展了挡墙平动(T)模式、绕墙底转动(RB)模式以及绕墙顶转动(RT)模式的离散元模拟。根据离散元模拟结果对主动土压力、墙后土体破坏模式以及应力状态进行了分析。研究结果表明:挡墙变位模式和墙后填土宽度的变化使得土体破坏模式和应力状态发生变化,引起主动土压力大小及分布的差异。T与RB模式滑动土楔中内摩擦角调动值会相对初始值增加,且T模式滑动土楔中会出现小主应力拱。RT模式较为特殊,在填土宽度较小时,其应力状态与T模式相似;在填土宽度较大时,滑动土楔上部会出现内摩擦角调动值相对初始值减小的区域,并出现大主应力拱。  相似文献   

7.
对库仑土压力理论的若干修正   总被引:1,自引:0,他引:1  
库仑土压力理论至今仍是计算土压力的重要方法而被人们所熟知。通过分析库仑土压力的墙后土楔体的受力特点,特别是深入研究了土楔体与墙的作用力关系,对库仑土压力理论给出了一些修正。认为土楔体和挡土墙之间的作用力(即定义的土压力),并非一定要达到极限状态,所以不能确定土压力的作用方向,但土压力的作用方向必须在其允许的角度范围之内。所以,认为库仑主动土压力为作用方向角度变化范围内的最大值,库仑被动土压力为作用方向角度变化范围内的最小值。对于墙后土楔体,认为墙体和土楔体是两个不同物体,土楔体的形成是因为土中产生潜在破裂面,而原库仑土压力理论要求墙体与土之间也达到临界状态是不必要的。墙体对土楔体的作用力(即土压力)实质就是相当于一物(墙)施加于另一物(土楔体)的力,即使土楔体滑动了,两物之间也并非要滑动。推导了主动土压力计算公式,给出了被动土压力的近似计算方案。算例证明,计算结果与原库仑理论有明显不同。该研究对库仑土压力的修正和求解值得引起重视。  相似文献   

8.
找寻特大型隐伏矿床的衍生矿床导向和成矿轨迹追踪研究   总被引:3,自引:3,他引:3  
裴荣富  吴良士 《矿床地质》1994,13(4):380-382
本文通过对挡墙背滑动土楔体力矩平衡的分析,提出了一种求解压力合力作用的力矩平衡新方法。并给出了三种类型挡墙的土压力合力作用位置的计算公式;以供参考。  相似文献   

9.
考虑土拱效应刚性挡墙土压力研究   总被引:6,自引:0,他引:6  
彭述权  周健  樊玲  刘爱华 《岩土力学》2008,29(10):2701-2707
基于库仑土压力理论,假定刚性挡墙后主应力拱迹线为抛物线,推导了主、被侧土压力系数和水平微分单元间摩擦系数的理论公式,得到改进的主、被动土压力计算公式。研究表明:考虑土拱效应计算结果与模型试验结果吻合比较好。主动极限状态下,土体内摩擦角越小,墙土接触面上外摩擦角越大,土拱效应越明显,主动土压力合力作用点越上移;被动极限状态下,土体内摩擦角和墙土接触面上外摩擦角越大,土拱效应越明显,被动土压力合力点越往下移。  相似文献   

10.
李新星  林永亮  朱合华  范文 《岩土力学》2006,27(Z2):111-114
实践证明,作用于挡土墙的主动土压力沿墙高不是直线形分布,而是非线性的。采用统一强度理论,通过对滑动土体中水平薄层单元的分析,给出了墙体绕基础转动情况下土压力合力、强度及土压力分布的理论计算公式。公式推导过程中考虑了中间主应力效应的影响。结果表明,强度理论效应对土压力有很大的影响,应用统一强度理论解可以更好地发挥填土材料的强度潜力,并能获得明显的经济效益。  相似文献   

11.
纪秋林  彭润民 《岩土力学》2009,30(Z2):189-191
采用库仑土压力理论的假设:挡土墙土压力是由墙后填土在极限平衡状态下出现的滑动楔体产生,在该滑动楔体上沿竖向取水平薄层作为微分单元体,通过作用在单元体上的水平力、竖向力,建立挡土墙上土压力分布的基本分析方程,结合整个滑楔体的力矩平衡条件,先确定土侧压力系数、再建立土压力分布和土压力合力及作用点高度的理论公式。算例计算值与实测值吻合很好,这表明该方法不仅可行,而且可靠。  相似文献   

12.
非极限主动土压力计算方法初探   总被引:5,自引:2,他引:3  
卢坤林  杨扬 《岩土力学》2010,31(2):615-619
针对未达到极限位移的刚性挡土墙,提出了一种简单可行的主动土压力计算方法。根据反映墙后主动区土体应力-应变性状的卸荷应力路径试验确定的应力-应变关系,建立非极限状态摩擦角与墙体位移的关系。对于未达到极限位移的挡土墙,结合已取得的位移与摩擦角之间的关系,采用与滑裂面相平行的微条对墙后滑动楔体进行划分,对微条进行受力分析,建立平衡方程,推导了滑裂面的倾角,从而得到非极限主动土压力计算公式。随后与一例模型试验数据作了对比分析,计算值与实测值基本吻合,仅在墙下部1/3墙高范围内存在一定的差距。研究表明,所提出的计算方法能够用于计算处于非极限状态下挡土墙的土压力,具有一定的理论意义和工程参考价值。  相似文献   

13.
陈林  张永兴  冉可新 《岩土力学》2009,30(Z2):219-223
将墙后土体主应力偏转考虑为土体的土拱效应,根据土拱形状计算平均竖直应力,由此得到了对应不同内摩擦角和墙土摩擦角的侧土压力系数。将其用于水平微分单元法,并满足力和力矩平衡条件求解挡土墙主动土压力,得到了挡土墙主动土压力强度、土压力合力和合力作用点的理论公式,并与库仑土压力理论和模型试验数据进行了比较分析。结果表明,挡土墙主动土压力强度为非线性分布,与模型试验结果基本吻合。  相似文献   

14.
基于土拱效应原理求解挡土墙被动土压力   总被引:1,自引:0,他引:1  
侯键  夏唐代  孔祥冰  孙苗苗 《岩土力学》2012,33(10):2996-3000
对平移模式下的刚性挡土墙和滑裂面间的楔形土体处于被动极限平衡状态的应力进行分析,考虑墙面和滑裂面之间土体水平力平衡,运用土拱效应原理推导出被动土压力系数和滑裂面水平倾角。并根据水平单元土体的静力平衡条件建立平衡方程,提出被动土压力分布、土压力合力及其作用位置的公式。将公式计算结果与试验结果以及库仑、朗肯理论所得结果进行比较,结果表明,与试验结果接近,验证了所得计算方法的合理性。  相似文献   

15.
The study presents a rational analytical approach to obtain the seismic passive response of an inclined retaining wall backfilled with horizontal c-Φ soil. Pseudo-dynamic analysis is carried out to obtain the seismic passive response. Here in this analysis, the critical wedge angle is a single one irrespective of weight, surcharge and cohesion and this fact satisfies the field situation in a more realistic manner. A planer failure surface is considered in the analysis. The effect of soil and wall friction angle, wall inclination, horizontal and vertical earthquake acceleration on the passive resistance and the variation of passive earth pressure along the height of the wall have been explored. A comparison to pseudo-static and other available methods have been made to highlight the non-linearity of seismic passive earth pressure distribution.  相似文献   

16.
By using pseudo-dynamic approach, a method has been proposed in this paper to compute the seismic passive earth pressure behind a rigid cantilever retaining wall with bilinear backface. The wall has sudden change in inclination along its depth and a planar failure surface has been considered behind the retaining wall. The effects of a wide range of parameters like soil friction angle, wall inclination, wall friction angle, amplification of vibration, variation of shear modulus and horizontal and vertical seismic accelerations on the passive earth pressure have been explored in the present study. For the sake of illustration, the computations have been exclusively carried out for constant wall friction through out the depth. Unlike the Mononobe-Okabe method, which incorporates pseudo-static analysis, the present analysis predicts a nonlinear variation of passive earth pressure along the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号