首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 on the R/V “Akademik Lavrent’ev” in 2005 and 2006. The studied area is located at the near-island trench of the slope in the central part of the Kurile island arc. Morphologically, it consists of two parts: inner volcanic arc represented by the Great Kurile Range and outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks that compose the basement and sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, the volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the distinguished complexes reflects the tectonomagmatic stage in the ridge evolution. The geochemical and isotope data on the volcanics indicate the contribution of ancient crustal material in magma source and, correspondingly, the formation of this structure on the continental basement. Two-stage model ages, TDM2, vary in a wide range from zero values in the mafic rocks to 0.77 Ga in felsic varieties, pointing to the presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with the tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. The values of (La/Sm)N and (La/Yb)N ratios vary from 0.74 and 0,84 in the tholeiitic varieties to 1.19 and 1.44 in the calcalkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and were formed during differentiation of magmatic melt that were channeled along fault zones from the mantle source slightly enriched in crustal component  相似文献   

2.
Three main groups of lavas are exposed on islands of the Lau Ridge: the Lau Volcanic Group (LVG), 14.0–5.4 Ma, are predominantly andesite; Korobasaga Volcanic Group (KVG), 4.4–2.4 Ma, are predominantly basalt and Mago Volcanic Group (MVG), 2.0–0.3 Ma, are basalt-hawaiite. LVG and KVG lavas are mostly medium-K tholeiitic rocks with high LILE/HFSE ratios characteristic of islands ares, while MVG lavas are ne-normative alkalic rocks with high LILE and HFSE, characteristic of ocean island basalts. LVG lavas have high ?Nd (+8.0–+8.4) and low 87Sr/86Sr (0.70273–0.70349) similar to N-MORB, whereas KVG lavas have slightly more radiogenic values (?Nd=+7.5?+8.4; 87Sr/86Sr=0.70323-0.70397). MVG lavas form an isotopically distinct group having lower ?Nd (+4.6–+4.9) and (87Sr/86Sr ranging from 0.70347–0.70375). LVG lavas were erupted in a primary oceanic island arc (Vitiaz arc) during the Miocene. Basaltic lavas were derived by approximately 19% partial melting of mantle wedge peridotite with only minor subduction component. Andesites and dacites were produced by low-pressure plagioclase-pyroxene-titanomagnetite dominated crystal fractionation. KVG lavas were erupted during the period immediately prior to or during the initial stages of rifting in the Lau Basin, and, like LVG lavas, show significant chemical differences at the northern and southern ends of the Lau Ridge. Lavas at the northern end (type (ii)) appear to be derived from a more depleted source than LVG but with a greater amount of subduction component. Those at the southern end (type (i)) probably came from a slightly more enriched source with less subduction component. MVG basalts and hawaiites were derived from an enriched mantle with little or no subduction input. The hawaiites (type (i)) could not have been derived from the basalts (type (ii)), and the two magma types must have come from different sources, indicating mantle heterogeneity. The lack of subduction influence indicates the MVG lavas are tectonically unrelated to the present-day Tonga arc, and the lack of depletion indicators suggests they have tapped a different (new?) part of the mantle wedge. This may reflect introduction of sub-Pacific mantle through the present Tonga-Lau subduction system.  相似文献   

3.
4.
Rock complexes in Mongolia experienced two remagnetization events. Almost all secondary remanence components of normal polarity were acquired apparently in the Cenozoic, after major deformation events, and those of reverse polarity were associated with intrusion of bimodal magmas during the Late Carboniferous–Permian reverse superchron. Active continental-margin sequences in some areas of Mongolia were folded prior to the Late Carboniferous–Permian magnetic event. The primary origin of magnetization in Late Paleozoic and Mesozoic rocks has been inferred to different degrees of reliability. According to paleolatitudes derived from most reliable paleomagnetic data, the analyzed rocks were located far north of the North China block throughout the Late Paleozoic and Early Mesozoic. Mongolia, as well as Siberia, moved from the south to the north in the Paleozoic, back from the north to the south between the latest Triassic and the latest Jurassic, and remained almost within the same latitudes in Cretaceous and Cenozoic time. These paleolatitudes show no statistical difference from those for the Siberian craton at least since the latest Permian (275–250 Ma). Older Mongolian complexes (with ages of 290, 316, and 330 Ma) likewise may have formed within the Siberian continent, which makes their paleomagnetic determinations applicable to calculate the polar wander path for Siberia. The paleolatitudes of Early Carboniferous sediments in Mongolia differ significantly from those of Siberia, either because of overprints from the reverse superchron or because they were deposited away from the Siberian margin.  相似文献   

5.
牛晓露  冯光英  刘飞  杨经绥 《地质学报》2022,96(8):2705-2724
板内玄武岩通常具有复杂的成分组成和成因过程。海南岛北部(简称“琼北”)自渐新世始逐渐发育了大量板内玄武岩,岩性跨度大,从石英拉斑玄武岩到橄榄拉斑玄武岩,再到碱性橄榄玄武岩和碧玄岩均有分布。对琼北晚新生代玄武岩虽已开展了广泛的研究,但“琼北晚新生代玄武岩的成分随时间演化规律”这一问题却未引起足够的关注。本文从晚更新世道堂组橄榄玄武岩入手,对其开展了细致的岩石学、矿物学和主微量及Sr- Nd- Pb同位素地球化学的研究;并结合文献中琼北其他时代(组)玄武岩的数据,阐述了琼北晚新生代玄武岩成分随时间演化的规律并对其成因进行了探讨。研究发现,自中—上新世到更新世再到全新世,琼北晚新生代玄武岩呈现从碱性玄武岩过渡到拉斑玄武岩再突变到碱性—强碱性系列的演化规律;中—上新世到更新世这一时期的碱性玄武岩和拉斑玄武岩可能形成于石榴子石二辉橄榄岩由低到高程度的部分熔融作用,而全新世碱性岩则更可能形成于石榴子石辉石岩的部分熔融。琼北晚新生代玄武岩的Sr- Nd- Pb同位素组成揭示其源区地幔以PREMA端元为主,但经历了来自古老陆壳的沉积物不同程度的改造作用。采用“海南地幔柱”模型可以较好地解释琼北晚新生代玄武岩的复杂组成和成因。  相似文献   

6.
琉球弧前盆地位于菲律宾海板块北部与欧亚板块汇聚部位,发育于琉球海沟北部增生楔与琉球岛弧之间,是典型“沟-弧-盆”体系的组成单元。现利用多道地震资料,首次建立琉球弧前盆地的层序地层格架,分析其新生代层序地层特征,阐明弧前盆地沉积充填演化过程,并探讨各盆地主要物源。通过地震剖面解释分析,表明:①始新世为岛弧变质基底沉积期,晚渐新世晚期-早中新世阶段发育残余伸展盆地基底沉积,属于浅海环境,主要受岩浆活动影响,发育火山碎屑岩相;②中中新世-第四纪时期是弧前盆地的主体沉积期,盆地从半深海沉积环境向深海环境过渡,发育典型深海沉积相,局部为火山碎屑岩相;中中新世时北部的南琉球群岛是弧前盆地主要物源区;晚中新世至第四纪时期,台湾岛东北部陆区成为对该弧前盆地贡献最大的物源区,而南琉球群岛的物源供给量降为次要地位。该研究结果是对琉球岛弧及周缘构造控盆作用研究的拓展,并对台湾岛陆地与东部海域“源-汇”系统研究有重要的指导意义。  相似文献   

7.
The main objective of this work was to define directions and principal features of the evolution of volcanism and sedimentation in Early Precambrian active volcanic zones. Analysis of reconstructed type sections of intensely metamorphosed and greenstone (sedimentary-volcanic) complexes revealed a general similarity of their structure and universal presence of two principal (contrast and differentiated) volcanic associations that replace each other from the bottom to top (Lazur, 2006). Volcanic complexes are crowned with significantly sedimentary sequences and the manifestation of bimodal (basalt-rhyolite) or acid (dacite-rhyolite) volcanism (Luchitskii et al., 1982). Our work is based on specific rock complexes, for which the primary nature of intensely metamorphosed Early Precambrian rocks has been reconstructed by geological, mineralogical, geochemical, and other methods (Lazur, 1986; Rosen et al., 2005).  相似文献   

8.
海南岛晚中生代的岩浆活动十分强烈,代表性的岩体有千家岩体、屯昌岩体和保城岩体,岩体岩性为花岗闪长岩,其中包含大量的闪长岩包体。系统的LA-ICP-MS锆石U-Pb定年结果表明,花岗闪长岩及包体均形成于101 Ma,为双峰式侵入岩,由来自地幔的高温基性岩浆注入下地壳较酸性的长英质岩浆,两种岩浆同时上侵冷却形成。它们形成的构造环境为板内拉张环境,指示了海南岛于101 Ma处于强烈的岩石圈减薄阶段,这与晚中生代太平洋板块俯冲引起的弧后拉张有关。  相似文献   

9.
黑龙江东部盆地群中、新生代构造演化   总被引:2,自引:0,他引:2  
经最新的区域地质资料、岩石地层、砾石统计、同位素年龄以及野外构造观察等方面的研究认为:早白垩世黑龙江东部盆地群为统一的原型盆地,随着猴石沟组时期桦南隆起和密山隆起的隆升而被破坏.黑龙江东部盆地群中、新生代构造演化可分成6个阶段:①绥滨组一东荣组时期,黑龙江东部盆地群的北部处于坳陷阶段;②滴道组(裴德组)沉积时期,黑龙江东部进入伸展裂陷阶段,形成一系列孤立的小型断陷盆地;③城子河组(云山组)一穆棱组(珠山组)时期,黑龙江东部整体处于坳陷阶段,形成统一的原型盆地;④东山组时期,黑龙江东部盆地群进入伸展裂陷阶段;⑤猴石沟组时期,随着桦南隆起、密山隆起快速隆升,统一的东部盆地群遭到破坏,转向各个盆地的独立演化;⑥新生代,黑龙江东部各盆地独立演化,现今构造格局最后定位.  相似文献   

10.
The Junggar basin contains an almost continuous section of Late Carboniferous–Quaternary terrigenous sedimentary rocks. The maximum thicknesses of the stratigraphic units constituting the basin cover make up a total of ~ 23 km, and the basement under the deepest part of the basin is localized at a depth of ~ 18 km. Both the folded framing and the basin edges have undergone uplifting and erosion during recent activity. These processes have exposed all the structural stages of the basin cover. Considering the completeness and detailed stratigraphic division of the section, we can determine the exact geologic age of intense mountain growth and erosion periods as well as estimate the age of orogenic periods by interpolating the stratigraphic ages. During the Permian orogeny, which included two stages (255–265 and 275–290 Ma), the Junggar, Zaisan, and Turpan–Hami basins made up a whole. During the Triassic orogeny (210–230 Ma), the Junggar and Turpan–Hami basins became completely isolated from each other. During the Jurassic orogeny (135–145 and 160–200 Ma), the sedimentation took place within similar boundaries but over a smaller area. During the Cretaceous orogeny (65–85 and 125–135 Ma), the mountain structures formed mainly at the southern boundaries of the basin and along the Karamaili–Saur line. The Junggar and Zaisan basins were separated at that time. The Early and Middle Paleogene were characterized by relative tectonic quiescence. The fifth orogenic stage began in the Oligocene. The recent activity consists of two main stages: Oligocene (23–33 Ma) and Neogene–Quaternary (1.2–7.6 Ma to the present).  相似文献   

11.
中、新生代柴达木北缘的盆地类型与构造演化   总被引:13,自引:2,他引:13  
柴达木盆地是中国西部一个大型中新生代沉积盆地,柴北缘是侏罗系主要分布地区。中新生代柴达木盆地是在一个古老的稳定地块基础上形成发展的,根据中新生代西北地区周缘板块活动和构造演化特点,提出柴北缘中新生代经历了两个由伸展到挤压的构造运动旋回:从早中侏罗世到晚侏罗世是第一个旋回;从早白垩世到晚白垩世-第三纪和第四纪为第二个旋回。早中侏罗世是一种稳定大陆内弱伸展坳陷盆地,不具有典型的裂陷盆地特征。从渐新世开始,柴达木盆地才进入强烈挤压的山间盆地阶段,并决定了柴北缘现今的构造格局。中、新生代构造运动影响着柴北缘油气的生成和分布。  相似文献   

12.
The geochemical study of 5 sediment cores obtained from different shallow hydrothermal fields along the volcanic arc (Methana, Milos, Kos and Yali), revealed that the degree of rock hydrothermal alteration from one area to another is different and is influenced by the physical and geochemical properties of the hydrothermal venting fluids and the type of the rocks in the substrate. The submarine hydrothermal fields in the central Aegean Sea are linked with the Hellenic Volcanic Arc and imprint their hydrothermal influence on the local marine sediments. Hydrothermal venting fluids differ in pH, temperature, gas and metallic element content, intensity of gas and water flux, while rock substrate is variable in terms of thickness and chemistry of the marine sediments and the mineral deposits. The analytical results showed that the lowest values of Fe are observed in Palaeochori Bay (0.72%) and the highest values are found in Bros Thermi (2.72%). The highest Mn concentrations are found in Bros Thermi (407 ppm) and the lowest are found in Yali (29 ppm). Cu and Pb highest concentrations are found in Bros Thermi (21 ppm) and Thiafi Bay (16 ppm), and the lowest in Yali (1 ppm). Zn highest values are found in Bros Thermi (56 ppm) and the lowest values in Kephalos Bay (10 ppm). Finally, the Ca and Mg-richest layers are observed in Kephalos 7.5 and 0.98% respectively and the lowest are observed in Milos (0.01% for Ca) and Yali (0.12% for Mg). The hydrothermal activity presented variations with geological time and hydrothermal suspended particulate matter coming out from the vent outlets also influence the sediment geochemistry. As an example in Methana, high concentrations of Cu and Zn in SPM result in high levels of Cu and Zn in the sediments.  相似文献   

13.
闫峻  陈江峰 《地质论评》2005,51(1):16-26
本文综合运用不同时代幔源包体平衡温压对比、玄武岩地球化学性质对岩石圈厚度的反演以及不同时代岩石圈地幔地球化学性质的对比的方法,把华北地块东部岩石圈的减薄时间限定在晚中生代至新生代之间。减薄的机制可能是华北东部地区晚白垩世以来大陆岩石圈的拉张作用。由于机械性拉薄和热、机械和化学侵蚀作用,岩石圈厚度最终减薄到70km以下。但古老的岩石圈地幔并没有完全因减薄而消失,残留部分受到了来自软流圈物质的强烈改造,使其Sr、Nd同位素组成类似于软流圈,但Os同位素没有受到明显的改变。改造后的岩石圈地幔成为华北地块东部新生代岩石圈地幔的主体。在时空上,岩石圈的减薄具有不均一的性质。  相似文献   

14.
晚中生代—新生代构造体制转换与鄂尔多斯盆地改造   总被引:13,自引:15,他引:13       下载免费PDF全文
鄂尔多斯盆地是叠加在华北古生代克拉通台地之上的中生代大型陆内盆地。晚中生代—新生代是鄂尔多斯盆地重要的改造阶段,区域构造体制经历了重大转换,在盆地周缘形成不同方向和不同样式的构造带。其中发生在中、晚侏罗世时期的燕山运动主幕,对鄂尔多斯盆地的定型和发展具有划时代意义,这期构造变动导致鄂尔多斯盆地周缘挤压逆冲构造带的形成。早白垩世时期,对区域构造应力体制转换的响应,鄂尔多斯盆地处于弱引张构造环境,引张构造变形主要集中在盆地西南缘地带,六盘山古地堑发育。新生代时期,构造变形主要发生在鄂尔多斯盆地周缘,形成一系列地堑盆地。晚中新世或上新世以来的新构造运动时期,受到青藏高原快速隆升和向东构造挤出作用的影响,鄂尔多斯盆地西南缘六盘山褶皱带快速崛起,而在盆地的其他周边地带则发生引张变形和地块差异性升降。最后,笔者论述了不同构造应力体制下盆地的改造作用,讨论了鄂尔多斯盆地研究中的一些基础地质构造问题。  相似文献   

15.
义敦岛弧是三江特提斯复合造山带的重要组成部分。文章对义敦岛弧海子山花岗岩体进行锆石U-Pb年代学、全岩地 球化学及Sr-Nd-Pb同位素地球化学进行分析,探讨其成因与构造意义。海子山花岗岩锆石U-Pb年龄为93.7±1.1 Ma(MSWD= 2.1, 2σ),为晚白垩世早期岩浆活动产物,岩石具高硅、富碱的特征,铝饱和指数A/CNK=1.04~1.12,属于弱过铝质岩石。 稀土配分曲线呈燕式分布,Eu/Eu*=0.05~0.32,具有明显的Eu负异常。富集Rb、Th、U、Ta、Pb等元素,明显亏损Ba和 Sr,表现出A型花岗岩的特征。岩石的εNd(t)=–4.8~-3.4,二阶段模式年龄TDM2= 0.91~1.00 Ga,结合岩石的Pb同位素特征及 低的CaO/Na2O比值与高的Al2O3/TiO2比值,说明其应起源于泥质岩石的部分熔融并有少量地幔组分加入。综合地球化学、 同位素特征及义敦岛弧地区构造资料,表明海子山花岗岩是造山后伸展背景下形成的A型花岗岩,为地壳拉张、减薄,软 流圈地幔上涌引起中上地壳泥质岩部分熔融的产物,具有壳幔物质混合的特征。  相似文献   

16.
The Late Cretaceous Chagai arc outcrops in western Pakistan, southern Afghanistan and eastern Iran. It is in the Tethyan convergence zone, formed by northward subduction of the Arabian oceanic plate beneath the Afghan block. The oldest unit of the Chagai arc is the Late Cretaceous Sinjrani Volcanic Group. This is composed of porphyritic lava flows and volcaniclastic rocks, and subordinate shale, sandstone, limestone and chert. The flows are fractionated low-K tholeiitic basalts, basaltic-andesites, and andesites. Relative enrichment in their LILE and depletion in HFSE, and negative Nb and Ta and positive K, Ba and Sr anomalies point to a subduction-related origin. Compared to MORB, the least fractionated Chagai basalts have low Na2O, Fe2O3T, CaO, Ti, Zr, Y and 87Sr/86Sr. Rather than an Andean setting, these results suggest derivation from a highly depleted mantle in an intraoceanic arc formed by Late Cretaceous convergence in the Ceno-Tethys. The segmented subduction zone formed between Gondwana and a collage of small continental blocks (Iran, Afghan, Karakoram, Lhasa and Burma) was accompanied by a chain of oceanic island arcs and suprasubduction ophiolites including Semail, Zagros, Chagai-Raskoh, Kandahar, Muslim Bagh, Waziristan and Kohistan-Ladakh, Nidar, Nagaland and Manipur. These complexes accreted to the southern margin of Eurasia in the Late Cretaceous.  相似文献   

17.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

18.
Results of geological research conducted by the Pacific Oceanological Institute of the Far East Division of the Russian Academy of Sciences and the Institute of Oceanology of the Russian Academy of Sciences on the submarine Vityaz Ridge during Cruise 37 of R/V Akademik M.A. Lavrentyev in 2005 are discussed. Various rocks constituting the basement and sedimentary cover of the ridge were dredged in three areas of the ridge. Based on isotope geochronology, petrogeochemical, petrographic, and paleontological data and comparison with similar rocks available from the adjacent land and Sea of Okhotsk, they are subdivided into several age complexes. Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene complexes are defined among the igneous rocks, while volcanogenic-sedimentary rocks are united into Late Cretaceous-Early Paleocene (late Campanian-Danian), undivided Paleogene (Paleocene-Eocene?), Oligocene-early Miocene, and Pliocene-Pleistocene complexes. The obtained data on the age and formation settings of the defined complexes made it possible to reconstruct the geological evolution of the central Pacific slope of the Kurile island arc.  相似文献   

19.
The integral data on structural position, age, and paleo-geodynamic setting of Mesozoic and Cenozoic granitoid complexes in northeast Asia make it possible to divide them into preaccretionary, accretionary, and postaccretionary groups participating in the structure of the accretionary-type continental margin. The preaccretionary granitoids are members of volcanic-plutonic associations of ensimatic island arcs or suprasubduction ophiolitic complexes, which mark the onset of growth of the granitic-metamorphic layer in the future continental crust. The accretionary granitoids emplaced during the accretion of diverse rock complexes to the continental margin and are localized in its frontal zone, where granitic-metamorphic layer grows further. The postaccretionary granitoid plutons of the marginal continental volcanic-plutonic belts seal up fold-nappe structures, determining the upper age limit of accretion and deformation. The origin of postaccretionary granitoids is related to remelting of older heterogeneous accretionary-island arc crust.  相似文献   

20.
《地学前缘》2016,(6):80-106
龙门山是由三条主要断裂组成的山体。汶川—茂县断裂,也称后山断裂,构成龙门山的西部边界;映秀—北川断裂为龙门山的中央断裂;灌县—安县断裂为龙门山的东部边界,也称前山断裂。龙门山断裂带以东为始自晚三叠世末的不同时期的前陆盆地。前陆盆地中从晚三叠世至2008年5月12日汶川地震(MS8.0),在不同年代地层中均有丰富的软沉积物变形构造(SSDS)记录,包括液化变形、重力作用变形、水塑性变形及其他相关的变形。这些变形层的地点紧邻龙门山的三条断裂,这些断裂在不同时期的活动诱发不同时期的强地震,导致当时尚未固结的沉积物变形(震积岩)。上三叠统小塘子组的软沉积的变形构造有液化角砾岩、液化滴状体、液化底辟、触变底辟、卷曲变形、拉伸布丁、负载、球-枕构造、枕状层及粒序断层等。侏罗系、白垩系主要为粗粒沉积物,除少数层位发现有液化变形外,主要的软沉积变形类型为各种形态、大尺度的砾岩负载构造。古近系为湖相沉积,沉积物粒度较细,软沉积物变形又出现大量液化变形构造,如液化混插、液化角砾岩等。2008年5月12日汶川地震(MS8.0)诱发大规模地表以下沙层液化,形成一系列液化变形构造与微地貌:液化沙堆、液化席状沙、沙火山、液化丘、坑状地形与混杂堆积。应用龙门山反射地震成果、古地震记录,结合区域构造可以给出龙门山断裂带发生的时间顺序与地震造山时期:(1)松潘—甘孜造山带与扬子板块的碰撞发生于晚三叠世早期,二者的边界即现在的汶川—茂县断裂;汶川—茂县断裂于晚三叠世末逆冲推覆造山,三叠纪末龙门山地区的山地可称松潘-甘孜山,在其东侧形成前陆盆地;晚三叠世印支造山旋回的大陆动力作用是龙门山诞生与孕育的阶段。(2)映秀—北川断裂与灌县—安县断裂的逆冲活动时间为侏罗纪—早白垩世,形成高山与前陆盆地。(3)早白垩世的龙门山已是一个由三条逆冲断裂组成的断裂带山体,可称古龙门山,山高约3 500m。(4)三条断裂在古近纪的活动诱发古近系软沉积物变形,但断裂未发生逆冲推覆造山,沉积物为湖相细粒沉积,古近纪是一个地震活动期,但不是造山的阶段。(5)中生代龙门山经历了多次瞬时地震造山与平静期山脉剥蚀降低的过程,现在的龙门山是晚新生代期间多次地震瞬时造山的产物。与众多的龙门山地学研究者不同,本文系采用另一种思维——软沉积物变形构造,即通过古地震途径讨论龙门山地区的构造演化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号