首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the solar wind, electrostatic ion cyclotron waves can be excited, by electrons or ions when the flow velocity becomes supersonic. The instability of these waves is investigated for a situation in which ions are streaming in opposite directions along the interplanetary magnetic field in a uniform background of relatively stationary electrons. Many modes become unstable under the existing conditions. It is conjectured that the excitation of this instability may lead to a steady state electrostatic turbulence in the solar wind.  相似文献   

2.
In this paper we have derived a set of transport equations for thermal electron component of the ionospheric plasma in the presence of an anisotropy of the electron energy distribution. Expressions are calculated in a 16-moment approximation for the moments of integrals of elastic and inelastic collisions of thermal electrons with basic neutral ionospheric components. The obtained moments determine variations of the hydrodynamical parameters, such as macroscopic velocity, pressure tensor, viscosity tensor, heat fluxes in respective equations due to collisions. The results have been obtained for an arbitrary degree of electron temperature anisotropy.  相似文献   

3.
The energy distribution of thermal electrons in the ionospheric plasma was measured by means of a glass-sealed Langmuir probe. Second derivatives of the v-i curves were obtained electrically by using the second harmonic method. The height of the measurement was from 103 to 360 km.Above 130 km the energy distribution of thermal electrons were Maxwellian enough to evaluate electron temperature. Below 130 km the electrons appeared to consist of two groups of electrons of different temperatures. Because of the bi-Maxwellian energy distribution, the apparent electron temperature obtained from the above method differed from that of an electron temperature probe.  相似文献   

4.
A. P. Singh  S. P. Talwar 《Solar physics》1995,157(1-2):251-269
The instability arising in a slab model of a jet moving in an external plasma is investigated, assuming the plasmas to be governed by the Chew, Goldberger, and Low (CGL) equations. Numerical results on the growth rates of unstable modes are obtained both for symmetric and asymmetric perturbations for equal aligned and transverse fields in wide and slender jet approximations. Special cases of an incompressible jet moving in a static CGL plasma and of a CGL plasma jet moving in an incompressible environment are also considered and conditions of instability derived.  相似文献   

5.
It is shown that an incoherent high-frequency radiation from an ensemble of relativistic particles with the power energy distribution is described by a certain general expression which covers practically all the cases of particle radiation in random electromagnetic fields of cosmic radiation sources.  相似文献   

6.
A general theory of rotational discontinuities is developed and the changes in the components of the plasma pressure, p| and p, and in the magnetic induction, B, are found. For a given value of λ=(p|p) 4πμ/B2 upstream only a limited range of downstream anisotropies are possible. If λ>0.6 upstream then isotropy is not possible downstream. Some special solutions are analysed and the identification of rotational discontinuities is the solar wind is discussed.  相似文献   

7.
We follow up the work of Fung and Young (1982) to derive explicit expressions for the power emitted and the power observed per unit solid angle along the direction of the group velocity in an anisotropic plasma. We have deduced the ratio of the time interval during which the energy is emitted and the corresponding time interval during which the energy is received in this anisotropic case. Our result obtained is consistent to the basic well-known concept of group-ray propagation in a plasma.  相似文献   

8.
The modified Chew-Goldenberger-Low equations have been used to study the stability of a resistive anisotropic plasma jet surrounded by a non-conducting compressible gas. The dispersion relation has been obtained and discussed in three limiting situations: (i) , the resistivity vanishingly small, (ii) and (iii) short and long wavelength perturbations. In some cases, the limiting situations 1 or 1 ( is the ratio of the density of the plasma jet to the density of the exterior gas) have been discussed. The conditions for instability have been obtained. It has been found that the resistivity introduces new modes which make the plasma jet overstable. In the limit of large wavelength disturbances, the jet with finite but high conductivity is found to be unstable. For small wavelength disturbances, the jet is found to be unstable.  相似文献   

9.
A form of general dispersion relation for electromagnetic waves in a fully ionized anisotropic plasma with loss-cone that explicates the contribution of the loss-cone to the dispersion relation is developed. By initially ignoring effects due to anisotropy, it is shown by means of Nyquist diagram technique that an isotropic loss-cone distribution can be unstable to EM waves corresponding to the whistler mode (0<< e ). The growth rate is then determined analytically for this distribution, assuming cyclotron resonance between the waves in the whistler mode and particles in the high energy tail of the velocity distribution. By including the effects of anisotropy, a general growth rate is obtained which is found to depend on the anisotropy, the size of the loss-cone, the softness of the energy spectrum, and the fraction of the particles which are resonant with the wave. For particular distributions the relative contributions of the anisotropy and of the loss-cone to the growth rate have been determined. It is seen that loss-cone effects, which depend on the size of the loss-cone as well as the softness of the energy spectrum, can be a significant factor in the determination of the growth rate. For the Lorentzian distribution, the half-width of unstable waves is considerably broadened and the growth rates are somewhat more severe as compared to a two-temperature Maxwellian. The threshold frequency is which confirms the presence of unstable EM waves in the magnetospheric plasma leading to turbulence.  相似文献   

10.
The problem of stability of an unbounded anisotropic plasma characterized by different temperatures along and transverse to the magnetic field is investigated for an arbitrary direction of propagation. Chewet al (1956) equations modified to incorporate self-gravitation, finite ion Larmor radius (FLR) and Hall current are used. Uniform rotation (of an order of interest in astrophysics) is also considered. Extensive numerical treatment of the dispersion relation leads to several interesting results.Inclusion of FLR, or Hall current or both together introduces pulsational instability for prepagation parallel to the magnetic field. The aperiodic growth rate of the mirror instability is only slightly altered due to FLR or Hall current effects. In the absence of rotation, self-gravitation, FLR and Hall current, the growth rate decreases for the mirror region as the direction of propagation approaches the field direction, while the fire hose instability persists for arbitrary propagation, even in the limiting case (the mirror limit) where the propagation is nearly transverse to the magnetic field. Uniform rotation altogether stabilizes the fire hose instability for a sufficiently strong pressure (or temperature) anisotropy. Pulsational instability is introduced when both ratation and self-gravitation effects are present. Either FLR or Hall current depresses the growth rate of the fire hose instability and introduces pulsational instability for the general case of arbitrary propagation. When FLR and Hall current effects are present simultaneously, the interaction terms due to these effects may be strongly destabilizing in nature for arbitrary propagation.  相似文献   

11.
The velocity distribution function of ionospheric electrons is calculated in the low-energy (< 8·7 eV) region. This is the first realistic model calculation for studying the transition of the distribution function from the nonthermal to the thermal part without assuming the Maxwellian distribution for the latter. The calculation is made for four altitudes between 120 and 250 km. All the relevant atomic collision processes are taken into account. Contributions of each individual process to determining the distribution function are discussed. The calculation shows that the deviation of the thermal energy part of the distribution function from Maxwellian in the region around the mean kinetic energy is within several percent. A much larger deviation is found at other portions of the function (still within the thermal part) especially at lower altitudes. In the Appendix, some features of the distribution function at higher energy regions are discussed.  相似文献   

12.
The large amplitude Ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons and two-temperature distribution of electrons are investigated. Using pseudo-potential approach, an energy integral equation for the system has been derived which encompasses complete nonlinearity for the plasma system. The existence region of the solitons is analyzed numerically. It is found that for selected set of plasma parameters, both rarefactive and compressive solitons exist in the electron-positron-ion (EPI) plasma. It is also found that due to finite positron concentration both subsonic and supersonic rarefactive soliton exist in EPI plasma. An increase in finite ion temperature ratio decreases the amplitude of the rarefactive solitons. In the case of small amplitude, it is found that there exist supersonic compressive as well as rarefactive solitons simultaneously. The amplitude of the solitons decreases with increase in ion temperature ratio (σ), however an increase in positron concentration (α) and temperature ratio of positron to electrons (γ) increases the amplitude of the solitons. Effect of various plasma parameters on the characteristics of the solitons are discussed in detail. The results of the investigation may be helpful to understand the nonlinear structures in auroral plasma, pulsars and magnetospheric astrophysical environment as well as laboratory plasmas.  相似文献   

13.
Distortion of spectrum of the cosmic microwave background due to anisotropic expansion is discussed. We consider an anisotropic cosmological model with a secondary re-heating and re-ionization. After the secondary re-heating distribution of photons momenta becomes isotropic but the spectrum becomes slightly different from that of black body.  相似文献   

14.
The Zakharov-Kuznetsov (ZK) equation is derived for electrostatic wave in a rotating magnetoplasma with anisotropic ion pressure and in the presence of stationary charged dust particles. The anisotropic ion pressure is defined using double adiabatic Chew-Golberger-Low (CGL) theory. The reductive perturbation method is employed to study the dynamics of obliquely propagating low frequency ion acoustic wave with adiabatic ions. It is found that the ion pressure anisotropy, polarity, density of the dust particles and rotational frequency have significant effects on the formation nonlinear structures in rotating magnetized dusty plasmas. The numerical results are also presented for illustration.  相似文献   

15.
Dispersion relation, resonant energy transferred, growth rate and marginal instability criteria for the electrostatic ion-cyclotron wave with general loss-cone distribution in low-β anisotropic, homogeneous plasma in the auroral acceleration region are discussed by investigating the trajectories of the charged particles. Effects of the parallel electric field, ion beam velocity, steepness of the loss-cone distribution and temperature anisotropy on resonant energy transferred and growth rate of the instability are discussed. It is found that the effect of the parallel electric field is to stabilize the wave and enhance the transverse acceleration of ions whereas the effect of steepness of loss-cone, ion beam velocity and the temperature anisotropy is to enhance the growth rate and decrease the transverse acceleration of ions. The steepness of the loss-cone also introduces a peak in the growth rate which shifts towards the lower side of the perpendicular wave number with the increasing steepness of the loss-cone.  相似文献   

16.
17.
A two-fluid model of the solar wind with anisotropic proton temperature and allowing for extended coronal proton-heating is considered for the case of a purely radial and of a spiral magnetic field. Proton-proton Coulomb-collisions together with a spiral interplanetary magnetic field are found to be sufficient to reduce the thermal anisotropy in the proton gas to a value in agreement with observations. Reasonable values are obtained for the flow-velocity, number density and the protontemperature near the orbit of the Earth.This work was supported by the Norwegian Research Council for Science and the Humanities (E. Leer) and the National Aeronautics and Space Administration under Contract No. NGR-05-009-081.  相似文献   

18.
Wave equations in an anisotropic plasma imbedded in a moving dielectric medium have been derived through Maxwell-Minkowski relations. These are solved for longitudinal and transverse cases of propagation. The dispersion relation within the medium has been deduced through which the nature of splitting may be understood.  相似文献   

19.
The expression for power radiated from a dipole within an anisotropic plasma has been obtained in presence of a current source and time-varying irregularities. This may be useful for numerical computation in lossy media.  相似文献   

20.
The non-linear heating of electrons in the ionospheric plasma due to high-power radio wave propagation has been investigated through an integro-differential equation derived from Boltzmann velocity-moment equations. Various processes appropriate to the situation under study are taken into account. The numerical solution of the derived equation is presented graphically.Department of Applied Mathematics, University of Calcutta, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号