首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of crystal clusters by synneusis (magmatic sintering) affects a wide range of magmatic systems from olivine clusters in komatiite to quartz clusters in high-silica granite. A common feature of synneusis in any mineral phase is the alignment of neighbouring crystals in certain lower-energy orientation relationships. However, the underlying mechanisms involved with both the alignment of crystals in lower-energy orientations and the binding of crystal clusters are not well understood. In the absence of mechanisms that bind crystals together upon contact, the same hydrodynamic forces that may bring crystals together can in theory also serve to disaggregate clusters. Here I use cathodoluminescence imaging and crystal orientation data from quartz clusters in high-silica granite to show that i) rapid crystalline neck growth along attachment surfaces and ii) grain rotation are two mechanisms that reduce the grain boundary energy of crystal clusters while increasing clusters’ shear strength. The continued crystallization of sintered phases as the magmatic body cools further cements crystal pairs and resists cluster disaggregation. Together these mechanisms underpin both the formation and preservation of large crystal clusters in dynamic magmatic environments.  相似文献   

2.
The principal evidence advanced in favor of synneusis (swimming together and attachment of crystals in igneous melts) is the observation in thin section of concentric zoning, with the centers of zoning in the individuals offset from the mutual boundary. However, randomly oriented sections through normal growth twins (twinned nucleus) and epitaxial overgrowths can show such offset in a large percentage of cases. A further possible cause of offset is the infilling of skeletal, dendritic or spherulitic growth forms. Irregularity and asymmetry, which have been cited as evidence of synneusis origin, are normal in epitaxial overgrowths, and may be displayed even in perfectly symmetrical growth twins, because of cuteffects and the fact that mismatch of faces at the composition plane of rotation twins often causes overlapping growth.Experiments have shown that crystals in fluids can be aligned, apparently by hydrodynamic forces, so that gross shape elements are parallel and in contact; and that once in position, crystals can become attached. However, the twin laws observed in feldspar are not those which would be predicted on the basis of gross-shape alignment, but are highly selective in crystallographic relations. There is abundant evidence that supposed synneusis clusters occur early in crystallization, whereas crystal-crystal contacts should increase in frequency with the concentration of crystals. Forces which could cause crystal faces to be directly attracted to one another over distances of greater than a few atomic diameters are at present unknown.Essentially all heretofore observed features of crystal clusters, especially those of early clusters, can be explained more simply as the result of growth processes than as the result of synneusis.  相似文献   

3.
The Vinalhaven intrusive complex provides field and petrographic evidence for multiple replenishments of mafic and silicic magmas, mingling and limited mixing, and rejuvenation of granite. Quartz in granitic rocks preserves a record of those processes, in the form of cathodoluminescence (CL) zoning, which is related to concentration of titanium, and to temperature of crystallization using the new TitaniQ (Ti in quartz) geothermometer. Injection of mafic melts into partly crystalline Vinalhaven granite resulted in partial quartz resorption followed by higher-temperature growth from H2O-undersaturated melt. This is shown by steep, rimward increases in CL intensity and Ti content across discordant boundaries that truncate older growth zones. Quartz zoning in granite affected by mafic magmas displays large rimward jumps in Ti content, whereas quartz in granitic feeders and in granite far from mafic rocks typically displays broad rims with decreasing Ti contents, consistent with slow cooling without thermal disruptions due to mafic recharge.  相似文献   

4.
On synneusis     
Synnneusis is the process of drifting-together and mutual attachment of crystals suspended in a melt. This process is episodic, is most characteristic of the earlier stages of consolidation, and appears to be related to magmatic turbulence. Union of crystals in synneusis relation normally occurs on their broader faces in preferred orientations which coincide with positions of low interfacial energy. Quantitative studies of several common igneous minerals indicate that crystals of a single mineral characteristically show a strong affinity for synneusis and typically unite in parallel or twinned orientation. Some pairs of unlike minerals join readily in synneusis relation, but most appear to be antipathetic.Synneusis structures have generally been overlooked or misinterpreted as epitaxial intergrowths, primary twins, irregular growth forms, or the random union of crystals which have grown into contact. These possibilities must be rejected where it can be shown that two or more distinct crystals are involved, that they were relatively large when they came in contact, and that they are oriented with prominent faces in common.Synneusis is responsible for three major features of the magmatic fabric: (1) the small scale segregation of minerals; (2) the systematic mutual orientation of adjacent crystals in synneusis relation; and (3) the morphology of their common boundary. Because synneusis structures are restricted to igneous rocks and are widespread and easily recognized, they provide a definitive and ready criterion of magmatic origin.  相似文献   

5.
The Vinalhaven intrusive complex consists mainly of coarse-grainedgranite, inward-dipping gabbro–diorite sheets, and a fine-grainedgranite core. Small bodies of porphyry occur throughout thecoarse-grained granite. The largest porphyry body (roughly 0·5km by 2·5 km) occurs with coeval gabbro, hybrid rocks,and minor fine-grained granite in the Vinal Cove complex, whichformed during the waning stages of solidification of the coarse-grainedVinalhaven granite. Porphyry contacts with surrounding coarse-grainedgranite are irregular and gradational. Compositions of wholerocks and minerals in the porphyry and the coarse-grained graniteare nearly identical. Neighboring phenocrysts in the porphyryvary greatly in degree of corrosion and reaction, indicatingthat the porphyry was well stirred. Thermal rejuvenation ofa silicic crystal mush by a basaltic influx can explain thecomposition and texture of the porphyry. Comparable rejuvenationevents have been recognized in recent studies of erupted rocks.Weakly corroded biotite phenocrysts in the porphyry requirethat hydrous interstitial melt existed in the granite duringremelting. Field relations, along with thermal calculations,suggest that cooling and crystallization of coeval mafic magmacould have generated the porphyry by thermal rejuvenation ofgranite crystal-mush containing about 20% melt. Field relationsalso suggest that some of the porphyry matrix may representnew felsic magma that was emplaced during remelting. KEY WORDS: granite; magma chamber; mafic replenishment; rejuvenation  相似文献   

6.
陈祥  肖力 《地质与资源》1999,8(3):171-178
额仁陶勒盖银矿床位于内蒙古新巴尔虎右旗境内.燕山晚期本区受太平洋板块的边缘影响,额尔古纳断裂带复活,产生强烈的花岗质岩浆活动.综合岩石的常量元素、微量元素、稀土元素及氧、锶同位素等证据表明花岗质岩浆为壳幔混合作用的产物.由花岗岩体向东依次排列Ⅰ、Ⅱ、Ⅲ和Ⅳ号矿带,其中Ⅱ、Ⅲ为主矿带,上述矿带在矿带规模、矿脉的矿石组成、矿石的结构构造和矿物成分、流体包裹体成分和均一温度等诸方面存在明显的水平分带;同时,各矿带均显示一样的矿石类型的垂向分带,即地表是氧化矿石(次生氧化富集带),向下是石英脉-硅化带,深部是硫化物-蚀变岩型矿石带.不同类型矿石的流体包裹体成分一致,均为H2O-CO2-Ca2+-Na+-K+-SO32--Cl-型成矿流体,说明它们有相同的来源.氧同位素表明,大气水在成岩成矿过程中起重要作用,大气水的作用使矿液量大增.含氧大气水的加入还有以下两方面的作用:(1)可能发生OH-取代Cl-,从而使与岩浆平衡的富矿流体及其后形成的成矿热液Cl-大增,提高了萃取岩浆及围岩中银的能力;(2)导致成矿流体的氧化-还原条件及酸碱度的变化.成矿各阶段形成的石英脉型矿石中的稀土元素、微量元素及氧、氢、硫、铅同位素特征表明,花岗岩、石英斑岩与矿石之间存在着显著的物源上的联系.由于石英斑岩是花岗质岩浆成岩期的最后产物,分异作用导致银在成岩期及期后成矿热液中富集.因此,石英斑岩是矿床的直接母岩.地表大气水在成岩和成矿作用的全过程中起重要作用.  相似文献   

7.
On the Eastern Tauride Belt, the Cretaceous calc-alkaline Karamadazı Granitoid consists of quartz diorite containing mafic microgranular enclaves (MME) and leucocratic granite. The quartz diorite consists of plagioclase (An8-65), hornblende, biotite, K-feldspar, quartz, epidote and titanite. Subrounded MME in the quartz diorite are holocrystalline, fine-grained, quartz diorite to diorite in composition, and display a similar mineral assemblage to their host. Large crystals in MME and quartz diorite show various disequilibrium microstructures indicative of hybridization. Plagioclase crystals exhibit inverse, normal, and oscillatory zoning with maximum core-to-rim An content increase up to 38% in the enclave and 40% in the quartz diorite. Both hornblende and augite exhibit normal and reverse zoning even in the same sample. The new field, textural, mineral compositional, and geochemical evidence leads to the conclusion that MME could have formed through injection of successive pulses of basic magma into upward mobile magma chambers containing cooler, partially crystalline quartz diorite magma. The quartz diorites show similarity to high-Al TTG (tonalites–trondhjemites–granodiorites), with their high Na2O, Sr, LREE, and low Mg#, Cr, HREE contents, and are suggested to be produced by extensive interaction between the crustal and mantle-derived melts through mixing at depth. In contrast, leucogranites have geochemical characteristics distinct from the quartz diorites and MME, and are probably not involved in MME genesis.  相似文献   

8.
Cathodoluminescence (CL) zoning in quartz crystals from rhyolitic pumices in two ignimbrite members of the ~340-ka Whakamaru super-eruption deposits, Taupo Volcanic Zone, New Zealand, is investigated in conjunction with the analysis of Ti concentration in quartz to reconstruct the history of changing magma chamber conditions and to elucidate the eruption-triggering processes. CL intensity images are taken as a proxy for Ti concentration and thus temperature and/or pressure and/or compositional variations during crystal growth history. Estimates of the maximum temperature changes (i.e., assuming other factors influencing Ti uptake remain constant) are made using the TitaniQ geothermometer based on the Ti concentration in quartz. These results are reviewed in comparison with Fe–Ti oxide, feldspar-melt and amphibole geothermometry. Core-to-rim quartz Ti profiles record a marked change in conditions (temperature increase and/or pressure decrease and/or change in melt composition) causing and then following a significant resorption horizon in the outer parts of the crystals. Two alternative models that could explain the quartz Ti zonation invoke a temperature increase caused by mafic recharge and/or a pressure decrease due to magma ponding and re-equilibration at shallow crustal levels. Concomitant changes in melt composition and Ti activity may, however, also have strongly influenced Ti uptake into the quartz. Some crystals also show other marked increases in CL brightness internally, but any accompanying magmatic changes did not result in eruption. Diffusion modelling indicates that this significant change in conditions occurred over ~10–85 years prior to caldera-forming eruption. This rapid thermal pulse or pressure change is interpreted as evidence for open-system processes, and appears to record a magma chamber recharge event that rejuvenated the Whakamaru magma system (melt-dominant magma plus crystal mush), and potentially acted as a trigger for processes that led to eruption.  相似文献   

9.
Synneusis of Kilauea Iki olivines   总被引:1,自引:1,他引:0  
Olivine phenocrysts in the picritic scoria that erupted from Kilauea Iki in 1959 occur as glomeroporphyritic aggregates of 2–16 crystals. The compositions and three-dimensional textures of the olivines vary within an aggregate and within individual lapilli. The attachment of crystals from different environments indicates that these aggregates formed by synneusis — the swimming together of crystals. Most of the crystals are attached along faces with their a crystallographic axes parallel and their c axes either parallel or perpendicular, so that the structural mismatch and interfacial energy are minimized. Observed facial attachments are consistent with fluid dynamical interactions of crystals falling with their large {010} faces horizontal. The aggregates formed in a liquid-rich magma. Rough computations suggest that the minimum aggregation time could be on the order of minutes. Aggregation of very small crystals suggests that the yield strength was less than 3 dynes cm–2. The textures of the aggregates are similar to those of cumulate peridotites.  相似文献   

10.
The Lianhuashan tungsten deposit occurs in the volcanic terrain in the coastal area of Southeast China,where rhyolite,quartz porphyry and granite consitute a complee magmatic series.The orebodies are located in the endo-and exo-contacts between the quartz porphyry and the metasandstone of the Xiaoping coal measues.Hongenization temperatures of melt inclusions in zircon and quartz are 1100℃and 1050℃ for rhyolite,1000℃ and 860℃for quartz porphyry,and 950-1000℃and 820℃ for granite,respectively,demonstrating that the rockforming temperatures dropped successively from the eruptive to the intrusive rocks and that the homogenization temperatures of melt inclusions in zircon are 50-180℃higher than those in quartz.Homogenization temperatures of gas-liquid inclusions in quartz are 230-520℃(mostly 230-270℃)for quartz porphyry,200-450℃(mostly 200-360℃)for ore-bearing quartz veins,150-210℃for granite 170-200℃ for the vein quartz in it.Quartz from the quartz porphyry and from the ore-earing quartz veins show similar characteristics in inclusion type and homogenization temperature,indicating that intergranular solutions must have been formed upon cooling of magma and that ore-forming solutions for the tungstem mineralization were evolved mainly from ore-bearing intergranular solutions in the quartz porphyry.  相似文献   

11.
陈祥 《地球学报》1999,20(4):418-427
额仁陶盖银矿床是次火山热液作用产物。燕山晚期本区受太平洋板块边缘的影响,在已存断裂复活条件下,产生壳幔混合作用形成花岗质岩浆,该岩浆在地下浅处发生强烈的结晶分异作用,形成花岗岩和石英斑岩,两者是同一岩浆不同成岩阶段的产物。石英斑岩是成岩阶段的最后产物。分异作用导致银在成岩期及期后成矿热液中富集。矿床地质地球化学证据表明石英斑岩是矿体的直接母岩。地表大气水在成岩成矿中起着重要作用:①有助于发生基底岩石的部分熔融;②有助于岩浆的结晶分异并导致银在石英斑岩( 浆) 中的富集;③有利于形成大量的矿液。  相似文献   

12.
东秦岭尚古寺斑岩钼矿地质特征及成矿潜力分析   总被引:3,自引:0,他引:3  
杨宗锋 《地质与勘探》2011,47(6):1077-1090
尚古寺斑岩钼矿位于东秦岭,为东秦岭地区已知钼矿区的最东部端元。出露面积约1.5km^2,围岩主要为元古代片麻岩和碱流岩。辉钼矿化主要发育在花岗斑岩体的东部和南部区域,花岗斑岩顶部细粒花岗斑岩和其上覆花岗质伟晶岩均呈浸染状矿化,南部角岩发育裂隙矿化。花岗斑岩主体岩性主要矿物组合为石英、钾长石和斜长石,显示具有富硅、富碱和...  相似文献   

13.
在前人研究的基础上,通过系统的野外考察,论证了位于赣东北德兴地区德乐中生代火山盆地中的德兴铜矿、银山银铜铅锌矿和金山金矿及蛤蟆石金矿属于同一成矿系统。德兴铜矿是典型的斑岩铜矿,成矿流体和金属元素主要来自岩浆;银山银铜铅锌矿是一个下部为斑岩铜矿、上部为浅成低温热液型银铅锌矿,成矿流体早期以岩浆为主,晚期有较多的大气降水参与,成矿物质主要来自岩浆;金山和蛤蟆石金矿是远接触带热液矿床,成矿流体为岩浆热液与大气降水的混合产物,金主要来自围岩——双桥山群浅变质岩。这3套矿床以中酸性花岗斑岩或石英斑岩(高钾钙碱质花岗岩)为核心具有明显的分带性,自中心向外或深部向浅部为:斑岩铜金钼矿、浅成低温热液型银铅锌矿和远接触带热液型金矿。这种矿床组合关系不同于已知的经典斑岩铜矿模型和斑岩铜矿一浅成低温热液金银矿床模型,因而,有必要提出一个新的模型:斑岩铜矿一浅成低温热液银铅锌矿一远接触带热液金矿模型。这套矿『末形成于中侏罗世,抑或是古太平洋俯冲板片局部重熔或撕裂重熔的产物,抑或是在活动大陆边缘岩浆弧后伸展带由地幔底侵的结果。  相似文献   

14.
王世伟  袁峰  王彪  姜伦 《岩石学报》2018,34(1):241-254
舒家店岩体位于长江中下游成矿带中部的铜陵断隆区,与繁昌断凹区(盆地)临近,主要的岩浆岩岩石类型有辉石闪长岩、石英闪长斑岩和花岗闪长岩等。正长花岗岩为舒家店岩体深部新发现的岩石类型,其矿物组合与岩体内其他类型岩石明显不同,其形成的背景存在争议。本文通过对岩体中正长花岗岩的锆石LA-ICP MS精确定年、Hf同位素和地球化学组成分析,研究舒家店岩体正长花岗岩的年代学、岩浆源区等问题。研究显示舒家店岩体为"异源同体"的复式岩体,岩体中的正长花岗岩的侵入时间为126.5±1.6Ma~129.8±2.4Ma,明显晚于早期的辉石闪长岩和石英闪长斑岩(138.2±4.6Ma~143.7±1.7Ma),也明显晚于舒家店斑岩型铜矿床的形成时代。全岩元素地球化学和锆石Hf同位素组成指示舒家店岩体中正长花岗岩为叠加到早期辉石闪长岩及石英闪长斑岩之上的后期岩浆活动的产物,可能与繁昌盆地内花岗岩有相同的源区,为新元古代新生地壳(类似新元古花岗岩)部分熔融的产物,其岩浆源区处于高温低压的环境,相较于辉石闪长岩和石英闪长斑岩起源更浅,指示长江中下游成矿带在145~123Ma地壳处于不断减薄的过程。  相似文献   

15.
黑龙江省岔路口超大型斑岩钼矿床位于大兴安岭北部,是目前我国东北地区最大的钼矿床,矿体赋存于中酸性杂岩体及侏罗系火山-沉积岩内,其中花岗斑岩、石英斑岩、细粒花岗岩与钼矿化关系密切.本文采用LA-ICP-MS锆石U-Pb定年方法,获得了矿区内二长花岗岩、花岗斑岩、石英斑岩、细粒花岗岩、流纹斑岩、闪长玢岩及安山斑岩的结晶年龄分别为162±1.6 Ma、149±4.6 Ma、148±1.6 Ma、148±1.2 Ma、137±3.3 Ma、133±1.7Ma和132±1.6 Ma.岔路口矿区内至少存在3期岩浆活动,其顺序为侏罗纪火山-沉积岩、二长花岗岩→晚侏罗世花岗斑岩、石英斑岩、细粒花岗岩→早白垩世流纹斑岩、闪长玢岩、安山斑岩.岔路口矿床成矿时代为晚侏罗世,是东北亚大陆内部构造-岩浆活化的产物,形成于古太平洋板块俯冲作用引起的挤压向伸展构造体制转折背景,与我国东部大规模钼矿化爆发期相对应.  相似文献   

16.
火神庙岩体位于华北陆块南缘栾川矿集区西部,为一杂岩体,该岩体与火神庙钼矿床密切相关.目前,人们对火神庙岩体的研究程度较低,严重制约了对火神庙钼矿床成因的认识.系统开展了年代学、地球化学和Hf同位素组成研究.结果表明,石英闪长岩、二长花岗岩和花岗斑岩的形成年龄分别为150.3±0.6Ma、146.0±0.6Ma和145.1±0.5Ma,为栾川矿集区晚侏罗世第2次大规模岩浆活动的产物.火神庙杂岩体属于I型花岗岩,是不同源区部分熔融形成的岩浆上升就位的结果.石英闪长岩是富集岩石圈地幔部分熔融的产物;二长花岗岩和花岗斑岩是富集岩石圈地幔部分熔融形成的镁铁质岩浆与太华群TTG岩系部分熔融形成的长英质岩浆混合后上升就位的结果.   相似文献   

17.
魏家钨矿床位于湘南西部铜山岭地区,是近年来在南岭成矿带西端新发现的一超大型矽卡岩型钨矿床。矿体主要产于祥林铺花岗岩与其围岩的接触带内,其形成与祥林铺花岗岩密切相关。为厘清其成岩成矿时代,本文对魏家钨矿区的花岗斑岩和石英斑岩进行了锆石LA-MC-ICP-MS U-Pb测年。结果显示,矿区花岗斑岩侵位时间为(157.8±0.9)Ma(MSWD=1.06),石英斑岩侵位时间为(158.3±1.4)Ma(MSWD=0.2)。矿区内花岗斑岩与石英斑岩侵位时间在误差范围内一致,表明两者可能是同一岩浆演化至不同阶段的产物,矿区内花岗质岩浆活动与钨多金属成矿作用时限约为158 Ma,为南岭地区中生代"大规模成矿"作用(160~150 Ma)的组成部分。另外,花岗斑岩中捕获有少量加里东期的岩浆锆石(435 Ma),指示该区曾发生加里东期岩浆活动,这与华南地区广泛存在的加里东期构造岩浆活动事件吻合。魏家钨矿成岩成矿时代的厘定对于在南岭成矿带西端寻找晚侏罗世钨矿具有重要的指示意义。  相似文献   

18.
位于新疆富蕴县境内的希勒库都克铜钼矿属于斑岩型矿床。含矿花岗斑岩和石英闪长岩为弱过铝质高钾钙碱性岩石,具有相对富集大离子亲石元素、亏损Nb、Ta、Ti元素的地球化学特征。获得含矿花岗斑岩SIMS锆石U-Pb年龄(329.6±4.1)Ma。综合分析,花岗斑岩和石英闪长岩可能为同一岩浆不同演化阶段的产物。据含矿岩石高的正εNd(t)值、低的87Sr/86Sr初始值推测,其原始岩浆起源于亏损地幔源区。  相似文献   

19.
黄沙坪矿床是湘南地区最大的铅锌矿床,除铅、锌外,可供开采利用的矿种还包括钨、锡、钼、铜、铁、硫等。矿区内岩浆作用复杂、成矿元素多样、矿化类型丰富,是研究湘南地区斑岩-矽卡岩-热液脉型Cu多金属与矽卡岩W-Sn多金属复合成矿作用的理想对象。为查明矿区Cu多金属与W多金属复合成矿机理,本文在已有研究的基础上,从岩石学、矿物学及元素地球化学等方面分别对区内石英斑岩和花岗斑岩这两类成矿岩体开展了系统研究。结果表明,两类岩体具有相似的源区特征,但在源区性质及其演化过程方面仍存在差异:石英斑岩侵位深度更浅,具有相对较高的氧逸度和较低的形成温度;而花岗斑岩则侵位相对更深,具有更高的形成温度和极高的分异演化程度、更低的氧逸度。这些地球化学特征差异可能是制约石英斑岩成铜矿而花岗斑岩成钨矿的重要原因。  相似文献   

20.
欧阳学财  狄永军  张达  徐洋  杨秋  王守营  陈杰  杜斌 《地质通报》2016,35(11):1869-1883
通过对东乡铜矿花岗斑岩进行岩石地球化学特征、锆石U-Pb定年研究,探讨其岩石成因、构造环境、形成时代与成矿的关系。东乡花岗斑岩的LA-ICP-MS锆石U-Pb年龄为156.4±1.5~161±1.0Ma。该岩体为高钾钙碱性系列,轻稀土元素富集,重稀土元素较亏损,具有明显的负Eu异常。微量元素富集大离子亲石元素,而亏损高场强元素。地球化学特征表明,东乡岩体形成于碰撞构造环境,岩浆来源于地幔,但形成演化期间经历了地壳物质的同化混染。该区矿石与花岗斑岩的稀土元素配分曲线存在一定的相似性,且成矿时间与岩浆侵入时间相近,表明岩浆侵入对东乡铜矿床的形成具有重要贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号