首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ross Sea is an important area for the ventilation of the deep layers of the Southern Ocean (e.g. [Jacobs, S.S., Fairbanks, R.G., Horibe, Y., 1985. Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater. In: Jacobs, S.S. (Ed.), Oceanology of the Antarctic Continental Shelf. Antarctic Research Series, vol. 43. pp. 59–85; Orsi, A.H., Johnson, G.C., Bullister, J.L., 1999. Circulation, mixing, and the production of Antarctic bottom water. Progress in Oceanography 109, 43–55]). These processes are driven by the atmospheric forcing which, at high latitude, plays a key role in the formation and thickness of sea ice. In order to investigate the effect of the atmospheric forcing variability at different time scales, we analysed the surface heat budget over the Ross Sea continental shelf and in Terra Nova Bay (TNB) polynya, using analyses for the period 1990–2006 provided by European Centre for Medium-range Weather Forecast (ECMWF). This study was also performed using thermohaline data collected within the activities of Climatic Long-term Interaction for the mass-balance in Antarctica project of the Italian National Programme for Antarctic Research for the summer periods from 1994 until 2001.The annual average of the heat budget over the continental shelf of the Ross Sea estimated in the period 1990–2006 shows an interannual variability ranging between −97 and −123 W m−2. Assuming that the heat loss must be compensated by the sensible heat carried by the Circumpolar Deep Water we estimated its transport (3.1 Sv) and its variability (0.2 Sv). Similarly in the TNB polynya the heat loss reaches its maximum in 2003 (−313 W m−2) and its minimum (−58 W m−2) in 1996. The related production of sea ice and the High Salinity Shelf Water (HSSW) were also estimated. The HSSW production switched from the lowest values during the first 10 years of the investigated period (1990–2000) to the highest values for the remaining period (2001–2006).The thermohaline characteristics of the water column in TNB show a general decrease in salinity with a superimposed variability. Comparison between the estimated HSSW production and the salinity observed within the TNB water column show similar tendency in the last years after 2002, while during the period 1995–1998 the behaviour is different. Our hypothesis concern a possible role of the CDW inflow in the TNB area and our results could be explained by a different contribution of CDW transport and HSSW production to the salt content within the water column.  相似文献   

2.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

3.
Barotropic responses of the East China Sea to typhoon KOMPASU are investigated using a high-resolution, three-dimensional, primitive equation, and finite volume coastal ocean model. Even the fact that the typhoon KOMPASU only brushed across the brink of China mainland without landing, it still imposed great influence across China's east coastal area, where storm surges ranging from 35 to 70 cm were intrigued during this event and a large wake of water setdown due to the outward radial transport driven by the cyclonic wind stress was generated after the KOMPASU traveled across the Yellow Sea. Analysis of the numerical results reveals that the barotropic waves propagating along the coast after the typhoon's landing can be identified as Kelvin wave and the currents associated with the storm are geostrophic currents. A series of model runs are initiated to diagnose the effects of wind stress, atmospheric pressure, and storm track variation on the surge's spatial distribution in the East China Sea. The barotropic waves affected by the atmospheric disturbance due to the typhoon in deep Pacific Ocean travel far more rapidly, arriving at the coastal regions at least 60 h ahead of the typhoon. The wave amplitudes are merely 0.2–0.4 cm and damp gradually due to friction. The model experiments also confirm that the surge levels in nearshore regions are highly dominated by winds, whereas the water level variations in deeper areas are controlled by the atmospheric pressure forcing during typhoon events in the East China Sea.  相似文献   

4.
Variability of dense water formation in the Ross Sea   总被引:1,自引:0,他引:1  
This paper presents results from a model study of the interannual variability of high salinity shelf water (HSSW) properties in the Ross Sea. Salinity and potential temperature of HSSW formed in the western Ross Sea show oscillatory behaviour at periods of 5–6 and 9 years superimposed on long-term fluctuations. While the shorter oscillations are induced by wind variability, variability on the scale of decades appears to be related to air temperature fluctuations. At least part of the strong decrease of HSSW salinities deduced from observations for the period 1963–2000 is shown to be an aliasing artefact due to an undersampling of the periodic signal. While sea ice formation is responsible for the yearly salinity increase that triggers the formation of HSSW, interannual variability of net freezing rates hardly affects changes in the properties of the resulting water mass. Instead, results from model experiments indicate that the interannual variability of dense water characteristics is predominantly controlled by variations in the shelf inflow through a sub-surface salinity and a deep temperature signal. The origin of the variability of inflow characteristics to the Ross Sea continental shelf can be traced into the Amundsen and Bellingshausen Seas. The temperature anomalies are induced at the continental shelf break in the western Bellingshausen Sea by fluctuations of the meridional transport of circumpolar deep water with the eastern cell of the Ross Gyre. In the Amundsen Sea, upwelling due to a persistently cyclonic wind field carries the signal into the surface mixed layer, leading to fluctuations of the vertical heat flux, anomalies of brine release near the sea ice edge, and consequently to a sub-surface salinity anomaly. With the westward flowing coastal current, both the sub-surface salinity and deep temperature signals are advected onto the Ross Sea continental shelf. Convection carries the signal of salinity variability into the deep ocean, where it interacts with modified circumpolar deep water upwelled onto the continental shelf as the second source water mass of HSSW. Sea ice formation on the Ross Sea continental shelf thus drives the vertical propagation of the signal rather than determining the signal itself.  相似文献   

5.
The Pearl River Estuary (PRE) in South China's Guangdong Province is a subtropical estuary with highly irregular topography and dynamically complicated circulations. A nested-grid coastal circulation modelling system is used in this study to examine dynamic responses of the PRE to tides, meteorological forcing and buoyancy forcing. The nested-grid modelling system is based on the Princeton Ocean Model and consists of three downscaling subcomponents: including an outer-most model with a coarse horizontal resolution of ~7 km for simulating tidally forced and wind-driven surface elevations and depth-mean currents over the China Seas from Bohai Sea to the northern South China Sea and an innermost model with a fine resolution of ~1.2 km for simulating the 3D coastal circulation and hydrography over the PRE and adjacent coastal waters. Model results during the winter northeast monsoon surge in January and super typhoon Koryn in June of 1993 are used to demonstrate that the 3D coastal circulation and hydrographic distributions in the PRE are affected by tides, winds and buoyancy forcing associated with river discharge from the Pearl River with significant seasonal and synoptic variabilities.  相似文献   

6.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

7.
A numerical shelf circulation model was developed for the Scotian Shelf, using a nested-grid setup consisting of a three-dimensional baroclinic inner model embedded inside a two-dimensional barotropic outer model. The shelf circulation model is based on the Princeton Ocean Model and driven by three-hourly atmospheric forcing provided by a numerical weather forecast model and by tidal forcing specified at the inner model's open boundaries based on pre-calculated tidal harmonic constants. The outer model simulates the depth-mean circulation forced by wind and atmospheric pressure fields over the northwest Atlantic Ocean with a horizontal resolution of 1/12°. The inner model simulates the three-dimensional circulation over the Gulf of St. Lawrence, the Scotian Shelf, and the adjacent slope with a horizontal resolution of 1/16°. The performance of the shelf circulation model is assessed by comparing model results with oceanographic observations made along the Atlantic coast of Nova Scotia and in the vicinity of Sable Island (on the Scotian Shelf) during two periods: October 2000–March 2001 and April–June 2002. Analysis of model results on Sable Island Bank indicates that tidal currents account for as much as ∼80% of the total variance of near-bottom currents, and currents driven by local winds account for ∼30% of the variance of the non-tidal near-bottom currents. Shelf waves generated remotely by winds and propagating into the region also play an important role in the near-bottom circulation on the bank.  相似文献   

8.
A numerical model (two horizontal dimensions, vertically integrated) is used to investigate the generation of long ocean waves, ranging from 20 min to almost 2 h, at Buenos Aires continental shelf. The domain includes the Río de la Plata estuary and the continental shelf together and extends from 33.5° to 40.5°S latitude, and from 51° to 63°W longitude. Sea-level oscillations are modeled by forcing with passage of atmospheric cold fronts and atmospheric gravity waves. Both forcing mechanisms, which have been present during high activity lapses of long ocean waves, are mathematically implemented. After several numerical simulations, it is concluded that the pressure and wind fields associated to cold fronts do not generate long ocean waves in the area, though they do produce disturbances with periods longer than the tidal ones. On the other hand, it is so concluded that atmospheric gravity waves are an effective mechanism to force long ocean waves. Results obtained show that generation of long ocean waves is highly sensitive depending on the propagation direction and the phase speed of the atmospheric gravity waves. The long ocean wave event detected during the large-amplitude gravity-wave event of 13 October 1985 is successfully simulated. Finally, all our results suggest that atmospheric gravity waves are a highly effective mechanism forcing for the generation of long ocean waves in Buenos Aires coastal waters.  相似文献   

9.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

10.
The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958–2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.  相似文献   

11.
12.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

13.
Tal Ezer 《Ocean Dynamics》2018,68(10):1259-1272
Tropical storms and hurricanes in the western North Atlantic Ocean can impact the US East Coast in several ways. Direct effects include storm surges, winds, waves, and precipitation and indirect effects include changes in ocean dynamics that consequently impact the coast. Hurricane Matthew [October, 2016] was chosen as a case study to demonstrate the interaction between an offshore storm, the Gulf Stream (GS) and coastal sea level. A regional numerical ocean model was used, to conduct sensitivity experiments with different surface forcing, using wind and heat flux data from an operational hurricane-ocean coupled forecast system. An additional experiment used the observed Florida Current (FC) transport during the hurricane as an inflow boundary condition. The experiments show that the hurricane caused a disruption in the GS flow that resulted in large spatial variations in temperatures with cooling of up to ~?4 °C by surface heat loss, but the interaction of the winds with the GS flow also caused some local warming near fronts and eddies (relative to simulations without a hurricane). A considerable weakening of the FC transport (~?30%) has been observed during the hurricane (a reduction of ~?10 Sv in 3 days; 1Sv?=?106 m3 s?1), so the impact of the FC was explored by the model. Unlike the abrupt and large wind-driven storm surge (up to 2 m water level change within 12 h in the South Atlantic Bight), the impact of the weakening GS on sea level is smaller but lasted for several days after the hurricane dissipated, as seen in both the model and altimeter data. These results can explain observations that show minor tidal flooding along long stretches of coasts for several days following passages of hurricanes. Further analysis showed the short-term impact of the hurricane winds on kinetic energy versus the long-term impact of the hurricane-induced mixing on potential energy, whereas several days are needed to reestablish the stratification and rebuild the strength of the GS to its pre-hurricane conditions. Understanding the interaction between storms, the Gulf Stream and coastal sea level can help to improve prediction of sea level rise and coastal flooding.  相似文献   

14.
Australia's North West Shelf supports a diverse range of tropical habitats and marine communities, as well as being Australia's most economically significant marine region. This study is the first attempt to describe the ocean circulation across the North West Shelf on time-scales from hours to years, and space scales from 10 km over the entire shelf to 1 km in a selected focus area around the Dampier Archipelago. A series of nested circulation models have been developed with forcing by realistic winds, tides, and larger scale oceanographic conditions (taken from a global circulation model). Dispersion and connectivity patterns have also been estimated over the shelf using particle-tracking techniques. The simulations covered a period of more than 6 years, allowing the tidal, seasonal, and interannual characteristics to be investigated. Model results confirm that the instantaneous current patterns are strongly dominated by the barotropic tide and its spring–neap cycle. However, longer term transports over the inner- and mid-shelf were mainly controlled by wind-driven flow, which followed the seasonal switch from summer monsoon winds to southeasterly trades in winter. Results were shown to be relatively insensitive to adjustable model parameters and sub-model structures. However, model performance was strongly dependent on the quality of the forcing fields. Connectivity results have been represented in terms of a comprehensive set of statistical probabilities that have been made available online (http://www.per.marine.csiro.au/connie). The potential regional-scale connectivity between coral reefs on the North West Shelf has been used to illustrate the approach.  相似文献   

15.
The Canadian Arctic Archipelago (CAA) is a complex area formed by narrow straits and islands in the Arctic. It is an important pathway for freshwater and sea-ice transport from the Arctic Ocean to the Labrador Sea and ultimately to the Atlantic Ocean. The narrow straits are often crudely represented in coupled sea-ice–ocean models, leading to a misrepresentation of transports through these straits. Unstructured meshes are an alternative in modelling this complex region, since they are able to capture the complex geometry of the CAA. This provides higher resolution in the flow field and allows for more accurate transports (but not necessarily better modelling). In this paper, a finite element sea-ice model of the Arctic region is described and used to estimate the sea-ice fluxes through the CAA. The model is a dynamic–thermodynamic sea-ice model with elastic–viscous–plastic rheology and is coupled to a slab ocean, where the temperature and salinity are restored to climatology, with no velocities and surface elevation. The model is spun-up from 1973 to 1978 with NCEP/NARR reanalysis data. From 1979 to 2007, the model is forced by NCEP/DoE reanalysis data. The large scale sea-ice characteristics show good agreement with observations. The total sea-ice area agrees very well with observations and shows a sensitivity to the Arctic oscillation (AO). For 1998–2002, we find estimates for the sea-ice volume and area fluxes through Admunsen Gulf, McClure Strait and the Queen Elizabeth Islands that compare well with observation and are slightly better than estimates from other models. For Nares Strait, we find that the fluxes are much lower than observed, due to the missing effect of topographic steering on the atmospheric forcing fields. The 1979–2007 fluxes show large seasonal and interannual variability driven primarily by variability in the ice velocity field and a sensitivity to the AO and other large-scale atmospheric variability, which suggests that accurate atmospheric forcing might be crucial to modelling the CAA.  相似文献   

16.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

17.
This study was aimed at modeling, as realistically as possible, the dynamics and thermodynamics of the Iroise Sea by using the Model for Applications at Regional Scale (MARS), a regional ocean 3D model. The horizontal resolution of the configuration in use is 2 km with 30 vertical levels. The 3D model of the Iroise Sea is embedded in a larger model providing open boundary conditions. As regards the atmospheric forcing, the originality of this study is to force the regional ocean model with the high-resolution (6 km) regional meteorological model, Weather Research and Forecasting (WRF). In addition, as the air surface temperature is highly sensitive to the sea surface temperature (SST), this regional meteorological model is improved by taking into account a regional climatologic SST to compute meteorological parameters. By allowing a better coherence between the SST and the temperature of the atmospheric boundary layer while giving a more realistic representation of heat fluxes exchanged at the air/sea interface, this forcing constitutes a noticeable improvement of the Iroise Sea modeling. The different sensitivity tests discussed here pinpoint the importance of entering, in WRF, SST data of sufficiently high quality before the computation of meteorological forcing when the aim is a study of dynamics and thermodynamics far away from the coast. On the other hand, when the target is the reproduction of coastal small-scale features in Iroise Sea modeling, the resolution of the meteorological forcing and the quality of SST are both paramount. The simulation of reference was carried out throughout the Summer and Autumn of year 2005 to allow comparisons with a campaign of surface current measurements by high-frequency radars conducted at the same period.  相似文献   

18.
Bo Yang  Jinyu Sheng 《Ocean Dynamics》2008,58(5-6):375-396
This study examines main physical processes affecting the three-dimensional (3D) circulation and hydrographic distributions over the inner Scotian Shelf (ISS) in June and July 2006 using a nested-grid coastal ocean circulation modeling system known as the NCOPS-LB. The nested-grid system has five relocatable downscaling submodels, with the outermost submodel of a coarse horizontal resolution of (1/12)° for simulating storm surges and barotropic shelf waves over the Eastern Canadian shelf and the innermost submodel of a fine resolution of ~180 m for simulating the 3D coastal circulation and hydrography over Lunenburg Bay of Nova Scotia in the default setup. The NCOPS-LB is driven by meteorological and astronomical forcing and used to study the storm-induced circulation over the ISS during tropical storm Alberto. Model results demonstrate that the coastal circulation and hydrographic distributions over the ISS are affected significantly by tides, local wind forcing, and remotely generated coastal waves during the study period.  相似文献   

19.
The Southern Brazilian Shelf (SBS) is a freshwater-influenced region, but studies on the dynamics of coastal plumes are sparse and lack in space-time resolution. Studies on the dynamics of the Patos Lagoon plume are even more limited. The aim of this paper is to investigate the influence of the principal physical forcing for the formation and behavior of the Patos Lagoon coastal plume. The study is carried out through 3D numerical modeling experiments and empirical orthogonal function (EOF) analysis. Results showed that the amount of freshwater is the principal physical forcing controlling the plume formation. The Coriolis effect enhances the northward transport over the shelf, while the tidal effects contribute to intensify horizontal and vertical mixing, which are responsible for spreading the freshwater over the shelf. The wind effect, on the other hand, is the main mechanism controlling the behavior of the Patos Lagoon coastal plume over the inner SBS in synoptic time scales. Southeasterly and southwesterly winds contribute to the northeastward displacement of the plume, breaking the vertical stratification of the inner continental shelf. Northeasterly and northwesterly winds favor ebb conditions in the Patos Lagoon, contributing to the southwestward displacement of the plume enhancing the vertical stratification along and across-shore. The EOF analysis reveals two modes controlling the variability of the plume on the surface. The first mode (explaining 70% of the variability) is associated to the southwestward transportation of the plume due to the dominance of north quadrant winds, while the second mode (explaining 19% of the variability) is associated to the intermittent migration of the plume northeastward due to the passage of frontal systems over the area. Large scale plumes can be expected during winter and spring months, and are enhanced during El Niño events.  相似文献   

20.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号