首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The Dholkata bauxite deposit of Keonjhar district, Orissa, has developed on the metavolcanics of tholeiitic basalt composition. The weathered profile reveals five distinct altered zones, such as topsoil, laterite, bauxite, lithomarge and altered metavolcanics. The mineralogy of different zones studied in a representative pit shows the association of major mineral constituents like gibbsite, goethite, hematite, kaolinite, limonite and quartz. Gibbsite is the most dominant one followed by goethite and hematite in the bauxite zone. The geochemical study of all weathering zones indicates the geochemical affinity of the elements Ni, Th and U for laterites and Cr, Zr and Hf for bauxites to occur in high quantities. Trend surface maps predict the bauxite zones in the different levels of the deposit. If the zones having A12O3 35–40 % are blended with high grade ores, the deposit may prove to be a potential one.  相似文献   

2.
Topaz granite is alkali-feldspar granite that contains essential albite, quartz, K-feldspar, lithium-mica, and topaz. As a group topaz granites are characterized by their extreme enrichment in F (up to 3 wt%) and a wide variety of lithophile elements. They can be subdivided into a 'low-P2O5 subtype' (P2O5 < 0.1 wt%, Al2O3 < 14.5 wt%, SiO2 > 73 wt%) and a 'high-P2O5 subtype' (P2O5 > 0.4 wt%, Al2O3 > 14.5 wt%, SiO2 < 73 wt%), the δ18O values of which indicate a dichotomy of source rock: the low-P2O5 subtype (δ18O < 10‰) having a meta-igneous protolith and the high-P2O5 subtype (δ18O > 10 ‰) a source with a significant component of pelitic material. The unusually high F contents enhance the efficacy of melt segregation and crystal-melt fractionation and so facilitate extreme differentiation in topaz granite magmas. Very low melt volumes restrict the bulk composition of the partial melts regardless of the nature of the source; and extreme fractionation forces them along a path of magmatic convergence, to produce a group of granitic rocks with near-minimum compositions so enriched in a variety of lithophile elements (Li, Nb, Ta, Sn) that economic mineralization often results.  相似文献   

3.
Ijolite-carbonatite complexes are ubiquitously surrounded of an aureole of metasomatically altered rocks. The process of alteration is termed fenitization and is generally caused by peralkaline fluids emanating from cooling alkaline, i.e. ijolite and carbonatite magmas. Ijolites and carbonatites normally occur together and attempts to determine the source of the fenitizing fluids may therefore lead to controversial, if not erroneous, conclusions.
Mineralogical and chemical data of fenites from Oldoinyo Lengai (Tanzania), Fen (Norway), and Alnö (Sweden) are reviewed in the present paper in order to reveal the main factors controlling the fenitization around ijolite and carbonatite. Despite the overall alkaline nature of the process, variables such as XCO2 of the fluid, activity gradients of SiO2, Al2O3 and CaO, FeO/MgO ratio, f O2 and temperature gradients may differ, producing distinctive patterns of fenitization around the two magmatic sources. The ijolitic-type fluid has low XCO2, high activities of alkalies, SiO2 and Al2O3, and low activity of CaO. The f O2 evolves along the hm-mt buffer conditions and the temperature falls gradually with distance from the magmatic source. The carbonatitic-type fluid has high XCO2, high activities of alkalies and CaO, and low activities of SiO2 and Al2O3. Temperatures and f O2 are initially high, but decrease sharply with distance from the source. Moreover, the CO2-rich fluid may complex and transport the REE.  相似文献   

4.
Graphitic cherts are interbedded within terrigenous sediments in the Cadomian orogenic belt of end-Proterozoic age. In the Armorican Massif (NW France), the graphitic cherts are of two types: massive cherts essentially composed of quartz (SiO2 > 96%) and with rare sedimentary structures; laminated cherts containing up to 3·4% Al2O3 and 92–98% SiO2. Sedimentary structures observed in the laminated cherts are indicative of a restricted hypersaline tidal or supratidal environment. The origins of both types of chert are to be found in the diagenetic processes of silification of terrigenous and mixed terrigenous-evaporitic facies. These processes, which could be mediated by the presence of organic matter, were controlled by the migration of the freshwater/saltwater mixing zone during periods of relative sea-level change. The proposed diagenetic origin for the cherts places a number of constraints on their use in the establishment of stratigraphic correlations.  相似文献   

5.
Hydration of eclogite, Pam Peninsula, New Caledonia   总被引:2,自引:0,他引:2  
Garnet glaucophanite and greenschist facies assemblages were formed by the recrystallization of barroisite-bearing eclogite facies metabasites in northern New Caledonia. The mineralogical evolution can be modelled by calculated P–T and P–X H2O diagrams for appropriate bulk rock compositions in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites, having developed in a clockwise P–T path that reached P ≈19 kbar and T  ≈590 °C, underwent decompression with the consumption of free H2O as the volume of hydrous minerals increased. Eclogite is preserved in domains that experienced no fluid influx following the loss of this fluid. Garnet glaucophanite formed at P ≈16 kbar during semi-pervasive fluid influx. Fluid influx, after further isothermal decompression, was focused in shear zones, and resulted in chlorite–albite-bearing greenschist facies mineral assemblages that reflect P ≈9 kbar.  相似文献   

6.
A thermodynamic model for titanium and ferric iron solution in biotite   总被引:6,自引:1,他引:5  
Recent crystallographic data indicate that in biotite Ti orders preferentially onto the M2 octahedral site rather than onto the M1 site as assumed in previous solution models for K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (KFMASHTO) biotite. In view of these data, we reformulate and reparameterize former biotite solution models. Our reparameterization takes into account Fe–Mg order–disorder and ferric iron contents of natural biotite as well as both natural and experimental observations on biotite Ti-content over a wide range of physicochemical conditions. In comparison with previous biotite models, the new model reproduces the Ti-content and stability field of biotite as constrained by experiments with significantly better accuracy. The predictive power of the model is tested by comparison with petrologically well-characterized natural samples of SiO2-saturated and SiO2-undersaturated rocks that were not used in the parameterization. In all these tests, the reformulated model performs well.  相似文献   

7.
Experimental results for most rare-earth elements, yttrium and thorium in several international geological reference samples are presented and compared with other published values, where available. The analytical method used to obtain these results involved a preliminary concentration of the rare-earths On milligram quantities of iron as carrier for atomic-absorption, flame-emission and spectrophotometric determinations, or on milligram quantities of Fe2O3, Al2O3 and SiO2 as carriers for optical-emission spectrometric determination.  相似文献   

8.
Abstract Corona textures, which developed in alternating layers in rocks in a supracrustal belt at Errabiddy, Western Australia, involved:
(a) The production of staurolite, cordierite and quartz or sapphirine between Kyanite and/or sillimanite and gedrite; and
(b) The production of cordierite between garnet and gedrite.
These textures are inconsistent with development along the same pressure–temperature path in the system FeO–MgO–Al2O3–SiO2–H2O, but can be accounted for if CaO, mainly in garnet, is taken into account. The sapphirine-bearing kyanite–gedrite textures are explained by lower a (SiO2) during their development. The assemblages indicate a consistent pressure–temperature ( P–T ) trajectory involving substantial uplift with only a slight decrease in temperature. The history of these rocks includes reheating of originally high-grade rocks that had cooled to a stable conductive geotherm, followed by substantial, essentially isothermal uplift. The tectonic environment for this was presumably the one responsible for emplacement of the high-grade terrain in the upper crust.  相似文献   

9.
Abstract. The Jecheon granitoids, having an elongated shape of NE-SW 27 km and NW-SE 13 km (190 km2), are composed mostly of magnetite-series hornblende-biotite granodiorite and biotite granite, which intrude into the Neoproterozoic metamor-phic and Paleozoic sedimentary rocks of the Ogcheon Belt. The granitoids have Triassic-Jurassic age of 202.7 ±1.9 Ma with very high 87Sr/86Sr initial ratio of 0.7140. The granodiorite has 63–69 % SiO2, 15.1–17.3 % Al2O3, <1.6 % MgO, 6–15 ppm Y and Sr/Y ratios of 24–76, and is depleted in HREE. Biotite granite together, the Jecheon pluton has adakitic characteristics, which are unique in a continental tectonic setting. The granitoids may have been generated by partial melting of an older adakitic granitoid of I-type basement, or by separation of early crystallized garnet and hornblende from an anatectic melt.  相似文献   

10.
Abstract: Ilmenite, hematite, garnet, monazite, zircon, rutile, magnetite, sillimanite, pyroxene and amphibole from the beach sands of Ekakula, Gahiramatha coast, Orissa, India are reported here for the first time. Their total concentration varies from 26. 4 to 100%. Ilmenite, monazite and zircon are between 100 and 300 um in size and are well rounded in shape. Ilmenite-hematite intergrowth is common. Ilmenite has 50. 02–54. 73% TiO2, 42. 42–46. 90% FeO (total Fe) and small amounts of Al, Mn, Mg, Ca, Ba, Si, V, Cr, and Zn. The bulk samples contain 10. 63–41. 42 % TiO2, 6. 15–26. 07 % FeO, 5. 86–16. 75 % Fe2O3, 7. 41–61. 74 % SiO2, 1. 39–12. 83% A12O3, 0. 32–4. 97% CaO, 0. 53–4. 24% P2O5, 0. 17–3. 27% MgO, 0. 15–2. 97% Na2O, 0. 07–2. 34% K2O, and 0. 05–0. 71% V2O5 together with appreciable amounts of La, Ce, Pr, Nd, Sm, Eu, Y, U, Th, Zr, and trace amounts of Pb, Zn, Cu, Ni, Co, and Cr. Khondalite, charnockite, calc-silicate granulite, leptynite, migmatite, gneiss, basic granulite and pegmatite of the Eastern Ghats appear to be the major source for the above heavy mineral assemblages. The samples are amenable to gravity and magnetic methods of beneficiation.  相似文献   

11.
The chemical analysis by EMPEDS of 140 samples in cores from six Red Sea troughs and basins has led to the discovery in the Nereus Deep of high vanadium concentrations (up to 1.3% V2O3) in several bulk samples, and to the isolation of a major magnetite phase. This vanado-magnetite, remarkable for its high content of vanadium (mean = 1.45% V2O3) and its lack of titanium, is frequently zoned, the V-content decreasing toward the outer zones. Oxides with up to 42% V2O3, have also been found. Since the origin of the magnetite is clearly authigenic, its high vanadium and low titanium concentrations are traced back to the differential hydrothermal leaching of Fe—Ti-oxides which occur profusely in basic eruptive rock clasts, actually present in some of the overlying seams.  相似文献   

12.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

13.
Arenites in the low-grade metasedimentary rocks of the Stirling-Barren Group, Western Australia, contain discrete spaced cleavages. These in part are pure white mica, but up to 30% of the cleavage zones consists of fine-grained quartz resulting from crystal plastic deformation. A modified Gresens analysis shows that the cleavage domains formed by a 50% volume loss associated primarily with SiO2 and MgO concentration decreases of 58% and 37%, respectively, and a 12% decrease in Fe2O3. Mössbauer spectroscopy shows that the Fe2+: Fe3+ ratio from lithon to cleavage changed from 50:SO to 15:85. This substantial difference cannot be accounted for by loss of iron. The data are best explained by the focusing of a highly oxidizing fluid through the cleavage domains where volumetric fluid rock ratios around 150 to 1 are indicated. In this example advectic processes appear to be important in low-grade regional metamorphism.  相似文献   

14.
Abstract. Silica scales containing large amounts of smectite were recently found in the pipelines for geothermal water at a geothermal power plant. To elucidate the mechanism of smectite formation, seven silica scale samples were characterized by powder X-ray diffraction, chemical analysis and 27A1 MAS NMR. Smectite was present in samples with MgO levels above 10 wt% and Al2O3 levels below 10 wt%. In 27A1 MAS NMR spectra, peaks assigned to both tetrahedrally and octahedrally coordinated aluminum (Al(4) and Al(6)) were observed for Mg-rich samples, whereas a peak due to Al(4) alone appeared in Mg-poor samples. From these observation and comparison between 27A1 MAS NMR spectra for synthesized precipitates of Al2O3-SiO2 containing MgO and not containing MgO, it is concluded that magnesium plays an important role in the stabilization of Al(6), and results in the formation of smectite  相似文献   

15.
In order to better identify the mineral phase which controls the rheology of the transition zone (between 410 and 660 km depth) transmission electron microscopy observations were made on several coexisting spinel-garnet assemblies: alkremite xenolith; pyrope-rich – MgO:1.1Al2O3 spinel assembly deformed at 1173K, 800 MPa in a Griggs apparatus; (Mg,Fe)3(Al,Mg,Si)2Si3O12 majorite – (Mg,Fe)2SiO4 spinel assembly synthesized in a laser heated diamond anvil cell. It was found that garnet crystals systematically remain undeformed while spinel crystals are plastically deformed. These results are in accord with the assumption that the rheology of majorite is stronger than the rheology of spinel, in the conditions of the transition zone.  相似文献   

16.
Abstract: Major and rare earth element contents are reported for Late Archean banded iron formations (BIFs) in the Bababudan Group of the Dharwar Craton, South India. The BIFs are mostly composed of SiO2 (average1ρ = 54.88.1 wt%) and Fe2O3* (44.38.2 wt%). The Al2O3 and TiO2 contents are remarkably low, suggesting that detrital components were starved during the BIF deposition. The BIFs have a LREE-enriched pattern with a relatively high (La/Yb)N (6.644.07). Total REE concentrations (RE) vary from 5.2 to 65.3 ppm. The REE patterns are characterized by the presence of a very large negative Ce anomaly (Ce/Ce*: 0.13-0.83) and a positive Eu anomaly (Eu/Eu*: 0.96-2.45). The Eu/Eu* decreases and (La/Yb)N increases with a increase of RE. These correlations of REE indices are similar to those of modern hydrothermal iron-rich sediments near a mid-ocean ridge (MOR). Greenstones associated with the BIFs have MORB-like geochemical features. These geochemical and geological lines of evidence indicate that the depositional site of the BIFs was remote from a continent and/or island arc and that the BIFs were in situ hydrothermal sediments near a MOR. A striking negative Ce anomaly in the BIFs indicates that oxygenated deep-sea environments emerged at 2.9-2.7 Ga. The existence of contemporaneous Mn deposits in the Dharwar Craton supports this assertion. Our scenario of oxygen in the Earth's surface of the Late Archean is different from long-held notion that the atmosphere and ocean were persistently anoxic throughout the Archean.  相似文献   

17.
A recent thermodynamic model for the Na–Ca clinoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), is improved, and extended to include cummingtonite–grunerite and the orthoamphiboles, anthophyllite and gedrite. The clinoamphibole model in NCMASH is adopted, but the extension into the FeO- and Fe2O3-bearing systems is revised to provide thermodynamic consistency and better agreement with natural assemblage data. The new model involves order–disorder of Fe–Mg between the M2, M13 and M4 sites in the amphibole structure, calibrated using the experimental data on site distributions in cummingtonite–grunerite. In the independent set of end-members used to represent the thermodynamics, grunerite (rather than ferroactinolite) is used for FeO, with two ordered Fe–Mg end-members, and magnesioriebeckite (rather than ferritschermakite) is used for Fe2O3. Natural assemblage data for coexisting clinoamphiboles are used to constrain the interaction energies between the various amphibole end-members. For orthamphibole, the assumption is made that the site distributions and the non-ideal formulation is the same as for clinoamphibole. The data set end-members anthophyllite, ferroanthophyllite and gedrite, are used; for the others, they are based on the clinoamphibole end-members, with the necessary adjustments to their enthalpies constrained by natural assemblage data for coexisting clino- and orthoamphiboles. The efficacy of the models is illustrated with P – T grids and various pseudosections, with a particular emphasis on the prediction of mineral assemblages in ferric-bearing systems.  相似文献   

18.
The high- P , medium- T  Pouébo terrane of the Pam Peninsula, northern New Caledonia includes barroisite- and glaucophane-bearing eclogite and variably rehydrated equivalents. The metamorphic evolution of the Pouébo terrane is inferred from calculated P–T  and P–T  – X H2O pseudosections for bulk compositions appropriate to these rocks in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites experienced a clockwise P–T  path that reached P ≈19  kbar and T  ≈600  °C. The eclogitic mineral assemblages are preserved because reaction consequent upon decompression consumed the rocks' fluid. Extensive reaction occurred only in rocks with fluid influx during decompression of the Pouébo terrane.  相似文献   

19.
The Higo metamorphic unit in west-central Kyushu island, southwest Japan is an imbricated crustal section in which a sequence of units with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The basal part of the metamorphic sequence representing an original depth of 23–24  km consists mainly of garnet–cordierite–biotite gneiss, garnet–orthopyroxene gneiss, orthopyroxene-bearing amphibolite and orthopyroxene-bearing S-type tonalite. These metamorphic rocks underwent high amphibolite-facies up to granulite facies metamorphism with peak P – T  conditions of 720  MPa, 870  °C. In addition sapphirine-bearing granulites and related high-temperature metamorphic rocks also occur as tectonic blocks in a metamorphosed peridotite intrusion. The sapphirine-bearing granulites and their related high-temperature metamorphic rocks can be subdivided into five types of mineral assemblages reflecting their bulk chemical compositions as follows: (1) sapphirine–corundum–spinel–cordierite (2) corundum–spinel–cordierite (3) garnet–corundum–spinel–cordierite (4) garnet–spinel–gedrite–corundum, and (5) orthopyroxene–spinel–gedrite. These metamorphic rocks are characterized by unusually high Al2O3 and low SiO2 contents, which could represent a restitic nature remaining after partial melting of pelitic granulite under the ultra high-temperature contact metamorphism at the peak metamorphic event of the Higo metamorphic unit. The metamorphic conditions are estimated to be about 800  MPa and above 950  °C which took place at about 250  Ma as a result of the thermal effect of the regional gabbroic rock intrusions.  相似文献   

20.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号