首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
四川盆地夏季降水区域差异及其与季风的联系初探   总被引:5,自引:0,他引:5  
白莹莹  张焱  李强  李永华  雷婷 《气象》2014,40(4):440-449
基于四川盆地逐日气象观测资料、NCEP/NCAR再分析资料,分析了近46年四川盆地夏季降水变化的区域差异及其与东亚夏季风和高原夏季风的联系。结果表明:盆西和盆东夏季降水序列与全国夏季降水的相关分布分别与我国夏季降水第Ⅰ、Ⅱ类雨型分布相类似。使用一元回归方法,分别得到了与东亚夏季风和高原夏季风相关的环流场,通过对两个环流场季风指数高低值年份的合成分析发现,东亚夏季风的影响主要体现在西北气流和东南气流的辐合带在我国东部地区位置变动以及强度变化;高原夏季风对环流场的影响体现在华北到河套地区一带风向的转换。着重分析了1961和1998年夏季与东亚、高原夏季风相关的环流场,发现东亚夏季风与高原夏季风都对四川盆地夏季降水有重要影响,其中盆西夏季降水主要与高原夏季风有关,盆东夏季降水与东亚夏季风和高原夏季风都有关,但以东亚夏季风为主。  相似文献   

2.
基于1958~2002年ECMWF再分析资料,我国160个台站降水和气温资料,从夏季高原季风环流系统特点出发,定义了能较好表征高原夏季风环流变化的特征指数,分析了高原夏季风年际、年代际变化特征,并揭示了高原夏季风强弱异常时的环流特征及其与中国夏季降水和气温的关系,主要结论为:(1)用6~8月600hPa(27.5~30°N,80~100°E)范围内平均的西风分量距平与(35~37.5°N,80~100°E)范围内平均的东风分量距平差定义了高原夏季风指数(PM I)。该指数计算简单,意义清楚,代表性好。(2)1958~2002年高原夏季风整体呈增强趋势,在20世纪60年代中期之前是高原夏季风的强盛期,之后是高原夏季风弱期,在80年代以后又转为季风强期。(3)高原夏季风与中国夏季降水和气温相关很好。将该指数与之前汤懋苍定义的指数进行性能综合比较后,发现该指数对川渝地区的夏季降水及气温有更好的指示意义。  相似文献   

3.
高原夏季风指数的定义及其特征分析   总被引:6,自引:0,他引:6  
基于1958~2002年ECMWF再分析资料,我国160个台站降水和气温资料,从夏季高原季风环流系统特点出发,定义了能较好表征高原夏季风环流变化的特征指数,分析了高原夏季风年际、年代际变化特征,并揭示了高原夏季风强弱异常时的环流特征及其与中国夏季降水和气温的关系,主要结论为:(1)用6~8月600hPa (27.5~30°N,80~100°E)范围内平均的西风分量距平与(35~37.5°N,80~100°E)范围内平均的东风分量距平差定义了高原夏季风指数(PM I)。该指数计算简单,意义清楚,代表性好。(2)1958~2002年高原夏季风整体呈增强趋势,在20世纪60年代中期之前是高原夏季风的强盛期,之后是高原夏季风弱期,在80年代以后又转为季风强期。(3)高原夏季风与中国夏季降水和气温相关很好。将该指数与之前汤懋苍定义的指数进行性能综合比较后,发现该指数对川渝地区的夏季降水及气温有更好的指示意义。   相似文献   

4.
利用1983-2012年NCEP/NCAR、NCEP/DOE、ECMWF再分析月平均资料,及中国160站月平均气温和降水量资料,利用统计学方法从大气环流、降水及温度等方面对高原夏季风与南海夏季风的关系进行了探讨。结果表明:高原夏季风与南海夏季风呈负相关关系,且大气环流及对流活动存在显著性差异。高原夏季风偏强(弱)同时南海夏季风偏弱(强)时,同期中国大部分地区的500hPa高度场偏低(高),南海地区500hPa高度场偏高(低);欧亚大陆低纬地区大部为偏东(西)风,南海地区处于反气旋(气旋)环流中。青藏高原主体地区上升运动较弱(强),南海中心区域上升运动均较弱(强),长江中下游地区降水增加(减少),华南降水减少(增加)。中国大部分地区气温较低(高),华南地区气温较高(低)。  相似文献   

5.
青藏高原季风年际变化与长江上游气候变化的联系   总被引:10,自引:0,他引:10  
利用NCEP资料计算的1951 1995年青藏高原季风(下称高原季风)指数序列[1]及长江上游22个测站的气温距平和雨量距平百分率资料,应用MHF(墨西哥帽)小波分析及最大熵谱分析方法,研究了高原夏季风和长江上游夏季气温及降水的时间-频率多层次年际时间尺度变化特征.结果表明,高原夏季风、长江上游夏季气温和降水均存在明显的阶段性变化特征.高原夏季风以22年低频变化和2.5年高频振荡为主,长江上游夏季气温变化以2~3年占优,而长江上游东、西部夏季降水第一主周期则表现为6~8年和2.5年,三者在时间域上存在着显著的相关关系,表明高原季风年代际变化对长江上游气候变化有显著影响.  相似文献   

6.
利用NCEP资料计算的1951—1995年青藏高原季风(下称高原季风)指数序列^[1]及长江上游22个测站的气温距平和雨量距平百分率资料,应用MHF(墨西哥帽)小波分析及最大熵谱分析方法,研究了高原夏季风和长江上游夏季气温及降水的时间一频率多层次年际时间尺度变化特征。结果表明,高原夏季风、长江上游夏季气温和降水均存在明显的阶段性变化特征。高原夏季风以22年低频变化和2.5年高频振荡为主,长江上游夏季气温变化以2~3年占优,而长江上游东、西部夏季降水第一主周期则表现为6~8年和2.5年,三者在时间域上存在着显著的相关关系,表明高原季风年代际变化对长江上游气候变化有显著影响。  相似文献   

7.
通过比较7种再分析资料计算的高原夏季风指数,并分析了高原夏季风与中东亚干旱半干旱区夏季降水的关系,总体上7种再分析资料得到的高原夏季风指数是相当一致的,并且在滤去10年以上周期的长波后,7种再分析资料计算的高原夏季风指数之间的相关系数比滤波前都有一定程度的提高,说明再分析资料在描述高原夏季风年际变化时是一致的。相关分析和合成分析的结果表明,高原夏季风对中东亚干旱半干旱区的夏季降水变化有重要的影响。高原夏季风偏强时,中亚地区偏南风异常并伴有辐合,南疆地区为异常东风,有利于水汽输送到这一地区,降水偏多,华北地区为异常东北风,阻碍了西南气流水汽的输送,降水偏少;高原夏季风偏弱时,中亚地区为北风异常并伴有辐散,南疆地区为异常西风,降水偏少,华北地区为异常西南风,降水偏多。  相似文献   

8.
中国东部夏季主要降水型与高原春季热力因子间的关系   总被引:3,自引:2,他引:1  
采用中国地面气象观测站2 474个站的降水资料以及NCEP/NCAR再分析资料,利用经验正交函数展开、相关分析和小波分析等方法,探讨了中国东部夏季主要降水型与春季高原大气视热源之间的可能相关特征,并初步分析了前春高原大气加热对东部夏季降水异常分布的影响机制。降水EOF分析表明,中国东部夏季降水主要分为:华南—江淮型和长江中下游型;相关和周期分析表明,300 hPa和400 hPa高原南部地区、500 hPa高原北部地区视热源与华南—江淮降水型之间相关显著,3个区域视热源均与华南降水呈负相关,且与江淮降水呈正相关;200 hPa高原偏北地区、500 hPa高原东部地区视热源与长江中下游地区降水呈负相关,而500 hPa高原西部地区视热源则与长江中下游降水呈正相关关系。以上春季高原不同高度关键区域的视热源可为预报夏季降水提供重要判据;从视热源与各个降水中心的相关特征可见,春季高原上空视热源加热场结构会影响中国东部夏季雨带南北位置的分布情况。由春至夏高原加热的"气泵"作用,使得由孟加拉湾和南海地区水汽输送经高原东部地区后,折向东输送至中国大陆东部地区。加热偏强时,水汽向北输送分量加强,雨带偏北,降水"南少北多",反之亦然。  相似文献   

9.
利用1979-2014年欧洲中期天气预报中心(ECMWF)的ERA-Interim再分析资料,构建了一个能更有效反映季风演变过程的高原季风新指数(ZPMI),并与已有高原季风指数TPMI、DPMI和QPMI进行对比分析。发现TPMI反映的高原夏季风爆发和撤退的时间较ZPMI、DPMI提前1~2个月左右,ZPM I能更好的反映高原上季风降水的年变化和年际变化特征。而其冬季风和夏季风具有相似的年际、年代际变化特征,总体均呈现上升的趋势,且夏季风增强的趋势更显著。同时,ZPMI也能够较好的描述高原上的气象要素特征,即:在强季风年,高原中、东(西)部降水多(少),气温高(低);而弱季风年,则与之相反。高原晚春(4-5月)土壤湿度与当年高原夏季风存在显著的相关,当4-5月高原中部、东部地区土壤湿度偏大(小)、西部土壤湿度偏小(大)时,高原夏季风偏强(弱)。  相似文献   

10.
海温异常对东亚夏季风强度先兆信号的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
利用ERA-Interim再分析资料、NOAA海温资料、CMAP格点降水资料和中国气象站降水资料,通过合成、相关和回归分析等方法研究了1979—2012年东亚夏季风强度与其先兆信号的关系,并分析了热带海温异常的可能影响。研究表明:东亚夏季风先兆指数反映了2月200 hPa纬向风距平的主要模态特征 (EOF1),前冬热带中东太平洋海温偏低 (高),2月亚洲地区西风急流位置偏北 (偏南),东亚夏季风先兆指数偏强 (弱)。前期热带海温异常对东亚夏季风强度有明显影响,前冬热带中东太平洋海温偏低 (高) 有利于东亚夏季风偏强 (弱)。2月亚洲中纬度地区纬向风异常特征在春季不能持续,先兆信号与东亚夏季风强度的联系主要源自热带海洋。  相似文献   

11.
选取适当的亚洲夏季风指数并对它们进行分类,结合1979-2020年长江中游地区夏季降水资料,分析了夏季风异常年份长江中游地区夏季大气环流和降水的特征。主要得出以下结论:(1)两类夏季风指数都与长江中游地区夏季降水呈负相关关系,并且第二类夏季风指数与长江中游地区夏季降水的相关关系更加显著,因此选取第二类夏季风指数来反映长江中游地区夏季降水特征。(2)长江中游地区的降水具有低频振荡特征,在第二类夏季风指数高值年和低值年,振荡的主周期都是32-64天。(3)第二类夏季风指数高值年和低值年的降水差异主要取决于西太平副高的强度和偏南季风的水汽输送。  相似文献   

12.
基于2008年夏季JICA高原探空资料、1979-2015年ERA-Interim和MERRA再分析资料和中国160站点降水资料,首先评估了两种再分析资料在青藏高原(下称高原)的适用性;其次,提出将高原高低层水汽通量散度差定义为高原水汽抽吸指数;然后,采用合成分析法定义了与长江中下游(MLRYR)夏季降水关系密切的水汽路径有5条:孟加拉湾路径、云贵路径、南海路径、低纬路径和汇合路径,并对其强度进行了定量计算。研究表明:ERA-Interim相对MERRA再分析资料在高原适用性更优。在年际变化上,5条水汽路径与MLRYR夏季降水呈同相位变化。5条路径之间关联密切,构成了两条影响M LRYR降水的反气旋式水汽输送相关链:"南海-孟加拉湾-高原南缘-云贵-M LRYR"和"南海-华南-M LRYR"。南海水汽路径是中国东部地区降水重要的水汽通道;汇合路径是调控M LRYR夏季降水的重要水汽输入通道,而云贵东向路径与整个长江流域的降水呈显著正相关。影响MLRYR夏季降水的高原水汽抽吸作用主要发生在高原南缘。高原水汽抽吸作用可以将低层的水汽抽吸至高层,通过增加长江流域西入的纬向水汽输送间接影响到长江流域的降水。  相似文献   

13.
亚洲—太平洋季风区的遥相关研究   总被引:15,自引:6,他引:9  
丁一汇  刘芸芸 《气象学报》2008,66(5):670-682
亚洲-太平洋季风区各季风子系统间的相互作用对季风区甚至全球的气候变化都有非常显著的影响.文中根据国内外相关研究,重点分析和评述了在亚洲-太平洋季风区中4种季节内时间尺度的遥相关关系,清楚地揭示了印度夏季风、东亚夏季风和西北太平洋夏季风之间的相互作用.研究发现:(1) 在亚洲季风爆发初期,印度夏季风的爆发相对于中国长江流域梅雨的开始存在相差大约两周的超前关系,形成从印度西南部经孟加拉湾到达中国长江流域及日本南部的遥相关型,即"南支"遥相关型.(2) 在季风盛行期间,长江流域降水明显受热带西北太平洋夏季风的影响,与西北太平洋夏季风降水呈反相关关系,即当季风减弱时,长江流域夏季降水偏多.(3) 与长江流域降水相反,华北雨季(7月第4候-8月第3候)则与西北太平洋夏季风降水呈正相关关系,当西北太平洋夏季风强时,西太平洋副热带高压异常偏北偏东,副高西南侧的异常东南水汽输送在中国华北地区上空辐合,给该地区降水偏多提供了充足的水汽条件.(4) 华北夏季降水同时还与印度夏季风呈正相关关系,在夏季风盛行期间,形成由印度西北部经青藏高原到中国华北地区的西南-东北走向的遥相关型,即"北支"遥相关型. 上述4种遥相关关系,反映了亚洲夏季风季节北推过程中,印度夏季风、东亚夏季风和西北太平洋夏季风子系统之间的关联.  相似文献   

14.
使用1980 2010年水平分辨率为25 km的遥感积雪深度资料和0.5°×0.5°降水观测资料分析了青藏高原(下称高原)冬春(12月至翌年5月)积雪异常和中国东部夏季(6 8月)降水的关系,然后通过区域气候模式Reg CM4.1在高原冬春季、春季积雪异常强迫下的试验结果进行对比,进一步验证了高原积雪异常影响中国东部夏季降水的机理。遥感积雪深度和格点降水资料诊断分析表明高原冬春少雪,中国东部夏季降水从北向南呈"-+-+"分布;冬春多雪,降水从北向南呈"+-+-"分布。数值模拟试验结果表明,高原冬春积雪异常影响中国东部夏季降水异常,高原冬春少雪,中国东部夏季降水从北向南呈"+-"分布,高原春季少雪,中国东部夏季降水从北向南呈"+-+"分布;高原冬春季以及春季多雪情形下,中国东部夏季降水异常呈相反的空间分布。同时,数值模拟结果表明高原冬春或春季少(多)雪,东亚夏季风偏强(弱),中国东部夏季降水异常。  相似文献   

15.
使用1980 2010年水平分辨率为25 km的遥感积雪深度资料和0.5°×0.5°降水观测资料分析了青藏高原(下称高原)冬春(12月至翌年5月)积雪异常和中国东部夏季(6 8月)降水的关系,然后通过区域气候模式Reg CM4.1在高原冬春季、春季积雪异常强迫下的试验结果进行对比,进一步验证了高原积雪异常影响中国东部夏季降水的机理。遥感积雪深度和格点降水资料诊断分析表明高原冬春少雪,中国东部夏季降水从北向南呈"-+-+"分布;冬春多雪,降水从北向南呈"+-+-"分布。数值模拟试验结果表明,高原冬春积雪异常影响中国东部夏季降水异常,高原冬春少雪,中国东部夏季降水从北向南呈"+-"分布,高原春季少雪,中国东部夏季降水从北向南呈"+-+"分布;高原冬春季以及春季多雪情形下,中国东部夏季降水异常呈相反的空间分布。同时,数值模拟结果表明高原冬春或春季少(多)雪,东亚夏季风偏强(弱),中国东部夏季降水异常。  相似文献   

16.
利用1961—2015年四川省156个台站逐日降水资料和NCEP/NCAR再分析资料,分析了四川省盛夏极端降水事件的时空分布特征及其与高原夏季风的关系。结果表明:近55 a四川省盛夏极端降水指数的变化趋势具有明显的区域差异,降水百分率在四川大部分地区呈减少趋势,而降水总量、强降水量、降水强度及1日、连续5 d最大降水量主要在川西高原西北部和盆地西部呈减少趋势,其他区域则呈增加趋势。就全省而言,近55 a四川盛夏降水总量整体呈不显著减少趋势,未发生明显突变,而降水百分率呈显著减少趋势,且发生了1次显著突变;降水强度、强降水量整体呈显著增加趋势,且发生了1次显著突变,而1日、连续5 d最大降水量呈不显著增加趋势,且发生了3次显著突变。四川盛夏各极端降水指数均存在3~4 a和8 a左右的振荡周期。四川盆地东、西部盛夏极端降水与高原夏季风异常关系密切,高原夏季风偏强时,500 h Pa高度距平合成场上东亚中高纬地区以经向型环流为主,西太平洋副热带高压偏南,来自孟加拉湾的西南风水汽加强,有利于四川盆地东(西)部盛夏极端降水偏多(少);高原夏季风偏弱时,情况则相反。  相似文献   

17.
利用1951—2007年NOAA延长重构的海温资料、NCEP/NCAR再分析资料和中国160站降水资料,研究了夏季西太平洋暖池海温的年际变化特征及其与中国夏季降水的关系。结果表明,夏季西太平洋暖池海温异常具有明显的年际变化特征;夏季西太平洋暖池海温异常偏高(低)时,亚洲热低压减弱(加强),西太平洋副热带高压加强(减弱)、位置偏西(偏东),850 hPa风场上中国东部地区为偏北(南)风距平,使得东亚夏季风减弱(增强),导致长江中下游地区夏季降水偏多(少)。  相似文献   

18.
利用2008—2014年逐小时空间分辨率为0.1°的全国自动站观测降水资料和CMORPH卫星反演降水融合资料,研究了青藏高原(下称高原)夏季降水日变化特征,并探讨了不同持续时间和等级降水对降水量日变化的影响。结果表明,整个高原地区夏季降水量和降水频率的日变化表现出明显的凌晨和傍晚的双峰结构,而降水强度的双峰结构却不太明显。进一步对各分区降水日变化特征的分析发现,高原中西部降水日变化特征与整个高原地区的一致,而高原北部(东部)地区降水量和频率的日峰值出现在傍晚(午夜-凌晨)。降水持续时间对降水量日变化有显著的影响,高原夏季降水量日变化的双峰特征是由短时(1~3 h)和长持续性(6 h以上)降水共同作用造成的,午夜-凌晨(傍晚)的降水日峰值主要是由于长持续性(短时)降水所引起。分析不同等级降水量日变化特征发现,高原北部地区小-大雨(暴雨)的降水量日峰值基本出现在下午(午夜),而高原中西部不同等级降水量的日变化基本都呈现出傍晚和午夜-凌晨的双峰结构,高原东部地区不同等级降水量的日变化形式较一致,日峰值出现在午夜-凌晨。  相似文献   

19.
中国东部夏季降水的准两年周期振荡及其成因   总被引:31,自引:13,他引:18  
应用中国160测站降水资料和ERA-40再分析资料以及EOF和熵谱分析方法,分析了中国夏季(6~8月)降水和东亚水汽输送通量的年际变化,表明中国(特别是华南、长江流域和淮河流域以及华北等地区)夏季降水具有2~3 a周期变化特征,即准两年周期的振荡特征,并表明中国降水的这种周期振荡与东亚上空夏季风水汽输送通量的准两年周期振荡密切相关;并且,还利用NCEP/NCAR的海表温度和日本气象厅的沿137°E海温剖面观测资料,分析了热带西太平洋表层与次表层海温的年际变化,揭示了热带西太平洋热力状态的变化也有显著的准两年周期的变化特征.作者利用相关和集成分析来讨论热带西太平洋热状态的准两年周期振荡对中国夏季降水和东亚水汽输送的影响,表明了热带西太平洋海温的准两年周期振荡对东亚夏季风及其所驱动的水汽输送都有很大影响.此外,作者还利用东亚/太平洋型(EAP型)遥相关理论,简单地讨论了热带西太平洋热力状态的准两年周期振荡影响中国夏季风降水准两年周期变化的物理机制.  相似文献   

20.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号