首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flux of diatom valves and radiolarian shells obtained during short-term and annual sediment trap experiments at seven localities in the Atlantic sector of the Antarctic Ocean (in the Drake Passage, Bransfield Strait, Powell Basin, NW and SE Weddell Sea and the Polar Front north of Bouvet Island) is summarized and discussed. The deployment of time-series sediment traps provided annual flux records between 1983 and 1990. The biosiliceous particle flux is characterized by significant seasonal and interannual variations. Flux pulses, accounting for 70–95% of the total annual flux, occur during austral summer, with a duration ranging between about 2 and 9 weeks. The annual values of vertical diatom and radiolarian flux range between 0.26 × 109 and more than 26 × 109 valves m−2 and between 0.21 × 104 and 70 × 104 shells m−2, respectively. Interannual differences in the particle flux range over a factor of 10. Grazers play an important role in controlling the quantity, timing and pattern of the vertical biosiliceous particle flux.The flux pattern of diatoms and radiolarians is similar at most of the sites investigated and shows a close relationship between the production of siliceous phytoplankton and proto-zooplankton. At some sites, however, the radiolarian flux pattern indicates probably phytoplankton production which is not documented by direct signals in the trap record.During their transfer through the water column to the ocean floor, the composition of the biosiliceous particles is altered mechanically (breakdown by grazing Zooplankton) and by dissolution, which significantly affects especially diatoms and phaeodarians in the upper portion of the water column and at the sediment-water interface.Significant lateral transport of suspended biosiliceous particles was observed in the bottom water layer in regions adjacent to shelf areas (Bransfield Strait), and in the vicinity of topographic elevations (Maud Rise), indicating considerable redistribution of biogenic silica in these regions.  相似文献   

2.
Eleven incubation experiments were conducted in the South Atlantic sector of the Southern Ocean to investigate the relationship between new production (ρNO3), regenerated production (ρNH+4), and total carbon production (ρC) as a function of varying light. The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (PBmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high PBmax and αB for ρNH4, with consequently low export efficiency. Results at stations likely relieved of Fe stress (associated with shallow bathymetry and the marginal ice zone) showed the highest rates of PBmax and αB for ρNO3 and ρC. To establish the key factors influencing the variability of the photosynthetic parameters, a principal components analysis was performed on P vs E parameters, using surface temperature, chlorophyll-a concentration, ambient nutrients, and an index for community size structure. Strong covariance between ambient nitrate (NO3) and αB for ρNO3 suggests that Fe and possibly light co-limitation affects the ability of phytoplankton in the region to access the surplus NO3 reservoir. However, the observed relationships between community structure and the P vs E parameters suggest superior performance by smaller-sized cells, in terms of resource acquisition and Fe limitation, as the probable driver of smaller-celled phytoplankton communities that have reduced photosynthetic efficiency and which require higher light intensities to saturate uptake. A noticeable absence in covariances between chlorophyll-a and αB, between PBmax and αB, and between temperature and αB may have important implications for primary-production models, although the absence of some expected relationships may be a consequence of the small dataset and low range of variability. However, significant relationships were observed between ambient NO3 and αB for ρNO3, and between the light-saturation parameter Ek for ρNO3 and the phytoplankton community’s size structure, which imply that Fe and light co-limitation drives access to the surplus NO3 reservoir and that larger-celled communities are more efficient at fixing NO3 in low light conditions. Although the mean PBmax results for ρC were consistent with estimates of global production from satellite chlorophyll measurements, the range of variability was large. These results highlight the need for more-advanced primary-production models that take into account a diverse range of environmental and seasonal drivers of photosynthetic responses.  相似文献   

3.
Journal of Oceanography - In the seasonal ice zone (SIZ), sea-ice algae have been hypothesized to influence phytoplankton species composition in seawater after melting from sea ice. However,...  相似文献   

4.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

5.
Siphonophores are commonly considered to be useful indicators of water masses and water-mass movement, but their employment as such across the wider Southern Ocean has not so far been attempted. We redress this here using archived samples, collected during January–February 1993 along a transect from Cape Town to the South African National Antarctic Expedition (SANAE) base in Antarctica, and compare the patterns generated with those determined from a prior analysis of whole assemblages at lower taxonomic resolution. Twenty-one species were identified from 18 of the original 53 samples collected, and two distinct assemblages were confirmed as separated by the Sub-Antarctic Front. That to the south was characterised by low diversity and high abundance and was dominated by cold-water specialists, whereas that to the north comprised a larger number of subtropical and temperate species at low abundance. Assemblage structure was strongly influenced by the mixed layer depth, sea surface salinity and chlorophyll a concentration, as well as mesozooplankton biomass. Congruence with the whole-assemblage study was high, indicating that this taxon can be suitably employed as a proxy in studies such as this. The study emphasises the value of archived plankton samples and makes a plea for better curation.  相似文献   

6.
A chemotaxonomic investigation of surface phytoplankton was undertaken on a research cruise to the Atlantic sector of the Southern Ocean during late austral summer 2009. Based on pigment signatures, several distinct regions emerged that were delineated by physical features. CHEMTAX analysis of high performance liquid chromatography (HPLC) pigment data indicated that diatoms generally dominated communities south of the Antarctic Polar Front (APF), particularly in regions of elevated biomass where chlorophyll-a (chl-a) was >1.5 µg l−1 and diatoms comprised >80% of biomass. Pigment signatures representative of haptophytes-8, indicative of Phaeocystis antarctica, were dominant near the ice shelf. Chl-a concentrations were 0.2–0.6 µg l−1 between the APF and the Subtropical Front (STF) and outputs suggested that chlorophytes, haptophytes-8 and haptophyte-6, in the form of coccolithophores, were the major constituents. Very low chl-a levels (<0.2 µg l−1) were observed north of the STF and the prokaryotes Synechococcus spp. and Prochlorococcus spp. were the dominant groups in these oligotrophic waters.  相似文献   

7.
Qualitative and quantitative analyses of the tintinnids retrieved in surface and vertical (down to 1150 m ) samples in the Scotia, Weddell, Bransfield and Bellingshausen areas allow us to define three distinct zones: (A) the Scotia Sea, Bransfield Strait and oceanic waters of the northern-central Weddell Sea, dominated by Codonelopsis gaussi and Cymatocylis affinis/conmllaria; (B) shelf and mostly ice-covered areas of the southernmost Weddell Sea and the Bellingshausen Sea, characterized by Laackmanniella prolongata and Cymatocylis drygalskii; (C) Bransfield-Weddell waters around the tip of the Antarctic Peninsula, where Codonellopsis balechi accounts for 80% of the tintinnids. These areas have (often significantly) different ice regimes, water-column depths, surface salinities, bulk planktonic settling volumes and microplanktonic concentrations. On the other hand, the composition of tintinnid assemblages is very similar on both sides of the Antarctic Peninsula. Causal interpretations for these heterogeneous distribution patterns and probable specific adaptations to the dissimilar environmental settings involved are analyzed.  相似文献   

8.
9.
Spatial distribution of magnetic susceptibility and the gravel fraction in surface sediments in the Atlantic sector of the Southern Ocean were investigated to reconstruct source areas and recent transport pathways of magnetominerals and ice-rafted debris. Maxima of magnetic susceptibility were observed offshore from areas where mafic source rocks occur, e.g. Queen Maud Land and the northern Antarctic Peninsula. The glacigenic input of debris and subsequent redeposition of fine material by bottom and turbidity currents on the continental margins result in regional variations of the gravel and susceptibility values. In the deep sea, however, the mixing of ice-rafted debris and turbidites from distal source areas causes a homogenous distribution of the susceptibility signal. On submarine elevations such as Maud Rise and Astrid Ridge, dust input may be an additional source for magnetominerals.  相似文献   

10.
基于2020年1—12月在赤道印度洋中部海域获取的沉积物捕获器时间序列样品,分析了沉降颗粒物与颗粒有机碳(particulate organic carbon, POC)通量的季节变化特征,并结合卫星遥感、数值模式及再分析数据探究上层物理过程对生物泵输出通量的调控作用。结果表明,2020年赤道印度洋中部海域的沉降颗粒物总通量与颗粒有机碳通量的变化范围分别为4.57~35.75 mg/(m2·d)\[(18.94±10.18) mg/(m2·d)\]和0.27~2.97 mg/(m2·d)\[(1.09±0.66) mg/(m2·d)\],两者均呈现显著的季节变化特征。总体上,1—3月、6月和9—11月呈现出3个显著的高通量事件。通过分析发现混合层深度变化与营养盐跃层波动的耦合作用可能是调控中深层通量变化的主要原因。与此同时,西南季风流(Southwest Monsoon Current, SMC)与赤道Wyrtki急流生消也可能通过改变温跃层或营养盐跃层深度对沉降颗粒物通量强度和季节变化起调控作用。  相似文献   

11.
Eucampia antarctica (Castr.) Mangin abundance curves for two piston cores from the western Agulhas Basin (southeast Atlantic sector of the Southern Ocean) were used to place volcanic glass shard and ice-rafted debris abundance curves into a stratigraphic framework for the last 100,000 years. A direct correlation is shown between increased abundance of E. antarctica, tephra and ice-rafted debris; low abundances are often characterized by calcareous sediment in the northern core. Peaks in abundance of E. antarctica have been interpreted as an indication of glacial periods and the increased ice-rafted debris and tephra during glacial periods is evidence for an ice-rafted origin for the tephra.Microprobe geochemical analysis of volcanic glass shards provides no single distinct source for the ash. The geochemical data is consistent, but not definitive, with a primary source in the Scotia Arc and a minor source from Bouvet Island. Between core correlations of geochemically “fingerprinted” dispersed tephra zones were not successful due to variability of glass shard geochemistry and limited sample size.  相似文献   

12.
This study examined 11-year (1997–2008) weekly and monthly time series of satellite-observed ocean color to understand the dominant temporal and spatial patterns of chlorophyll-a in the southwest Atlantic sector of the Southern Ocean. Using empirical orthogonal function analysis and k-means classification, we classified the study area into eight regions, which were in good accordance with the oceanographic and topographic features. Examination of the chlorophyll-a time series in each region revealed that contrary to our expectation, regular seasonal phytoplankton blooms were observed only in a limited area. Of the eight regions, only two showed typical seasonal blooms, and one showed weak seasonality, whereas other regions exhibited irregular seasonal blooms of variable duration. We attribute the absence of regularity in seasonal blooms to relatively shallow winter mixing, which would prevent entrainment of limiting micronutrients such as iron and silicate. In the southwest Atlantic sector of the Southern Ocean, topographic effects and sea ice may be the most important factors controlling primary productivity. In the South Georgia region, chlorophyll-a showed a significant correlation with geostrophic current velocity, indicating that topographic effects depend on the interaction of current strength and topographic structure. Interannual variability of the surface chlorophyll in some regions also revealed longer periodicity (~6 years). The periodicity seemed to be related to El Niño–Southern Oscillation and to sea-ice dynamics influenced by the Antarctic Circumpolar Current.  相似文献   

13.
The composition, distribution, abundance, biomass and size structure of mesozooplankton, collected using Bongo nets in the top 300 m layer along a transect between the Antarctic continent and Cape Town, were investigated during the second South African Antarctic Marine Ecosystem Study (SAAMES II) in Jan.–Feb. 1993. Small (<10 mm) and medium (20–50 mm) size groups of zooplankton consistently dominated across the Southern Ocean. The highest zooplankton densities were recorded at the Antarctic Polar Front (APF) and at the Subtropical Convergence (STC). Minor peaks in zooplankton densities were observed in the southern vicinity of the Subantarctic Front (SAF) and APF. Elevated zooplankton stocks were also found within the Marginal Ice Zone (MIZ) and the Polar Frontal Zone. The lowest densities were recorded in the permanently open zone (MIZ–APF) and in the Subantarctic zone (SAF–STC). Copepods were generally important along the entire transect and formed the bulk of zooplankton stock within the MIZ and in the Polar Frontal Zone (APF–SAF), accounting for at least 40–95% of total abundance and biomass. Euphausiids were also a prominent group along the transect. Their contribution was highest (up to 80% of total biomass) between the MIZ and the APF, mainly because of the occurrence of swarms of the Antarctic krill Euphausia superba. Tunicates, Pyrosoma sp. and Salpa fusiformis, were found in great numbers only in the region of the STC and further north, while Salpa thompsoni was abundant at the southern boundary of the APF. Chaetognaths dominated samples numerically and by mass in the Subantarctic Zone. Results obtained from cluster and ordination analyses show that zooplankton community structure was well correlated with the position of various biogeographical zones separated by the main frontal systems of the Southern Ocean. Two major groupings of stations, separated by the SAF, were identified in these analyses. This front separated the Antarctic and the subantarctic/subtropical assemblages, confirming its important role as a biogeographical boundary.  相似文献   

14.
15.
The stable carbon isotope composition of particulate organic carbon (POC) from plankton, sediment trap material and surface sediments from the Atlantic sector of the Southern Ocean were determined. Despite low and constant water temperatures, large variations in the δ13C values of plankton were measured. 13C enrichments of up to 10‰ coincided with a change in the diatom assemblage and a two-fold increase in primary production. Increased CO2 consumption as a result of rapid carbon fixation may result in diffusion limitation reducing the magnitude of the isotope fractionation. The δ13C values of plankton from sea-ice cores display a relationship with the chlorophyll a content. High ‘ice-algae’ biomass, in combination with a limited exchange with the surrounding seawater, results in values of about − 18 to − 20‰. It is assumed that these values are related to a reduced CO2 availability in the sea-ice system. In comparison with plankton, sinking krill faeces sampled by traps can be enriched by 2–5‰ in 13C (e.g. central Bransfield Strait). In contrast, the transport of particles in other faeces, diatom aggregates or chains results in minor isotope changes (e.g. Drake Passage, Powell Basin, NW Weddell Sea). A comparison between the δ13C values of sinking matter and those of surface sediments reveals that 13C enrichments of up to 3–4‰ may occur at the sediment-water boundary layer. These isotopic changes are attributed to high benthic respiration rates.  相似文献   

16.
Radiolarian-based paleoceanographic reconstructions generally use the abundance of selected radiolarian species. However, the recent focus on the opal flux and the development of isotope measurements in biogenic opal and the organic matter embedded in it demands a better knowledge of the origin of the opal. We present here an estimation of the opal content of the skeleton of 63 radiolarian species from two sites in the Southern Ocean. The skeletons are modelled as associations of simple geometrical shapes, and the volume thus obtained is combined with opal density to obtain the amount of opal. These data are, thus, used to determine the most important opal carriers in the radiolarian assemblage in both cores.  相似文献   

17.
以分析季节对大西洋声传播的影响为研究目的,应用WOA13季节平均数据和Mackenzie声速经验公式,分析了大西洋声道轴和表层声速值的四季分布情况,再利用BELLHOP水声学数值模型,在设定的声源频率1 000 Hz和掠射角15°~-15°情况下,仿真计算选用位置点5 m深度声源的四季声传播情况,研究结果表明:按照实际的季节,大西洋会聚区波导的反转深度,冬季最小,春季增大,夏季最大,秋季再减小.在中低纬度的典型声速剖面下,夏季会聚区跨度最大,秋季和冬季递减,春季最小,第一会聚区的四季跨度差在1 km内.在高纬度的正梯度声速剖面下,夏季声传播距离最远,秋季减小,冬季最近,春季增大,且传播距离的差别较大.各变化规律均以四季循环更替的形式出现.  相似文献   

18.
The distribution of the colour index is considered in the region bounded by 8–11°N and 13°30–18°30W based on the results of measurements made on board vessels of the Marine Hydrophysical Institute of the Ukrainian SSR Academy of Sciences (MHI) in 1977–1985. Mean values and statistical characteristics are calculated for the colour index variability over one-degree squares. A map of its multi-yearly average distribution is plotted.Translated by M. M. Trufanov.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号