首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
 A 3-year study of indoor radon in more than 1000 homes in northern Virginia and southern Maryland was conducted using 3-month exposure alpha-track monitors. In a study set of 200 homes, first-floor indoor radon concentrations, which most closely approximates home exposure levels, averaged slightly more than 3 pCi/l. In a study set of 100 homes, sub-slab ventilation was used to reduce indoor radon concentrations. Interest in remediation was related to public perception of the hazardous nature of radon; people living in homes with indoor radon measurements of more than 4 pCi/l were more likely to participate in the remediation phase of the project. Sub-slab ventilation was successful in more than 90% of the homes in reducing indoor radon from concentrations as high as 30 pCi/ to less than 4 pCi/l, at least for the entire year of post-remediation radon measurements. Received: 29 February 1996 · Accepted: 29 May 1996  相似文献   

2.
Radon buildup in homes is now recognized throughout the world as a potentially major health hazard. The U.S. Nuclear Regulatory Commission and the U.S. Environmental Protection Agency estimate 8,000–30,000 fatalities per year in the United States due to indoor radon. The Albuquerque, New Mexico area was chosen for study because it is representative of metropolitan areas in the southwestern United States where slightly uraniferous source rocks (Sandia granite) have provided the very immature soil for much of the area. The granite contains 4.7 ppm U, and limestone capping the granite 5.7 ppm U. Soils in the area average 4.24 ppm U, and Th/U ratios average 3.2. These data suggest some removal of U from the source rocks, but fixation of the U in the soils (that is, as opposed to widespread removal of the U by solution), thus providing a ready source for soil radon. A pilot study of soil radon in the area in winter of 1983–1984 shows high values, 180 pCi/l, relative to the U.S. average (about 100 pCi/l). In the winter of 1986–1987, 180 dwellings were surveyed for their indoor radon levels, including 20 that had been surveyed in summer of 1986. Twenty-eight percent of those in the winter study yielded indoor radon above the EPA suggested maximum permissible level of 4 pCi/l air, well above the EPA estimate of 10–15 dwellings for the U.S. The indoor radon levels show positive correlation with closeness to the Sandia Mountains, to soil radon, to excess insulation, to homes with solar capacities, and other factors. Building materials may provide a very minor source of some indoor radon. Summer readings are lower than winter readings except when the houses possess refrigerated air conditioning.  相似文献   

3.
Attempts to predict which geographic areas should be associated with a high percentage of homes with unusually high indoor radon levels have been based on estimates of soil radon and soil permeability for geological units. In northern Virginia and southern Maryland, it appears that predictions of indoor radon based on estimates of homesite soil radon and soil permeability are very useful.  相似文献   

4.
High indoor radon in approximately 30 percent of private dwellings in the Albuquerque, New Mexico area has been reported previously. The present study explains the areas of high indoor radon as a function of different soil and/or bedrock in the area. Soils were sampled during summer and winter periods using alpha track radon detectors. The values range from 40 to 890 pCi/I air at a depth of 38 cm. The gross mean average is 360 pCi/I for the area for summer readings and 200 pCi/I for winter readings; both values are well over the average U.S. soil radon values of approximately 100 pCi/I. Analyses of soil uranium show a range in values of 1–6 ppm, with a mean of 3.1 ppm. Thorium values range from 3.3 to 28.8 ppm, and Th/U ratios range from 2.9 to 4.6.These values for U, Th, and Th/U suggest that soil U and Th are close to the values reported for the Sandia granite, the source of most of the pediment on which Albuquerque is built. Soil infiltration rates range from ~6 × 10–4 to 4.5 × 10–3 cm/sec for the samples, and soil moisture content ranges from 1.4 to 7.2 percent. A fair correlation of summer soil radon with infiltration rate is noted. Correlation of soil radon with moisture content and/or with percent silt, silt + clay, clay size fraction material is not established by this study. Soil radon values do correlate with regions in the Albuquerque area where high indoor radon is common. A better correlation of high indoor radon values with soils developed immediately over bedrock is observed. Furthermore, all values of average soil and indoor radon increase significantly with proximity of the stations to the Sandia Mountains. Soil uranium also shows this trend. The data argue that regions of potentially high radon can thus be identified.  相似文献   

5.
 Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m3 (1 pCi/l) to 558 Bq/m3 (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments was associated with significantly elevated radon levels, after adjustment for radium concentration and building type. Validation and interpretation of results are discussed. Received: 20 October 1997 · Accepted: 18 May 1998  相似文献   

6.
Background radiation levels in the Albuquerque, New Mexico, area are elevated when compared to much of the United States. Soil K, U, and Th are somewhat elevated compared to average values in this country and generate roughly 60 mrem per year to the average resident. Cosmic ray contribution, due to the mean elevation of 5,200 ft above sea level, is 80 mrem/yr—well over the average for the United States. Thirty percent of the homes in Albuquerque contain indoor radon levels over the EPA action level of 4 pCi/ compared to 10–12 percent of homes for the entire United States. Indoor radon contributes about 100–300 mrem/yr. Food, beverages, and x-ray doses are assumed at an average-equivalent for the United States and locally yield 96 mrem/yr. Total contributions from other minor sources (color TV, coal, weapons fallout, etc.) are under 10 mrem/yr. Thus total background radiation received by Albuquerque residents is about 330–530 mrem/yr, well in excess of the rest of the United States. The spread in mrem values is due to variations in the contribution from indoor radon.Douglas G. Brookins, Professor of Geology and former Chairman of the Department, 1976–1979, passed away unexpectedly on April 30, 1991. He was a man of passion, intellect, and conviction. He left us at the peak of his productive career, but he leaves behind a legacy of exceptional accomplishments and contributions to his friends, family, students, and profession. He was a member of the Faculty Senate at the time of his death and had served two previous terms in 1984 and 1986.Doug's academic accomplishments were of world class, beginning with an AB degree, Summa Cum Laude, from U.C. Berkeley in 1958 and a PhD from MIT in 1963. He came to UNM as a full professor in 1971, having previously served at Kansas State University, and built a first class program in isotope geochemistry. He wrote five books and had a sixth in progress, edited several others, and authored or coauthored approximately 500 technical papers, book chapters, and reports.—Bruce M. Thomson and Wolfgang E. Elston, University of New Mexico.  相似文献   

7.
Analysis of 153 residential air radon (Rn-222) screening measurements from southeast Michigan indicates that basements host Rn levels two to three times higher than upper-level rooms. Compared to unfinished basements, finished (e.g., paneled walls, tiled floors) basements apparently reduce indoor air Rn levels while partially finished basements may not. Factor analysis of residence questionnaire data explains 59 percent of the Rn data variance. The volume of pathways (e.g., foundation cracks/holes, uncapped sumps) allowing Rn seepage into the dwelling controls the largest portion, 23 percent, of the explained data variance. The residence water source explains 11 percent of the Rn data variance. Groundwater Rn levels contribute to the air Rn data variability, but the study data cannot quantitatively assess this contribution. Seven percent of the Rn data variance is likely controlled by house depressurization facilitated by residence structural properties. Residences with foundation cracks or poorly sealed joints and low-volume indoor-outdoor air exchange are more prone to this effect. Eighteen percent of the explained Rn data variance correlates with the residence's primary heat source. Evidently, operating combustion sources also induce house depressurization and allow Rn to be drawn into the house through entry paths. Twenty-four percent of the analyses equal or exceed 4 pCi/1 Rn. In residences occupied 5 years by the same individuals, 17 percent of the Rn data are 4 pCi/l; here the arithmetic mean air Rn level is 8.3 pCi/l and the average occupancy period 17.4 years.  相似文献   

8.
In 1996–1997, indoor radon values of more than 40,000 Bq/m3 and large seasonal and geographical variations in indoor air radon were reported from a residential area located on a highly permeable ice-marginal deposit. Geochemical analyses of bedrock, groundwater and sediments and comparisons between indoor radon values and soil radon values indicate that the indoor radon concentrations in this area are strongly affected by subterranean airflows caused by temperature differences between soil air and atmospheric air. The airflows concentrate the radon-laden soil air towards the topographic highest part of the deposit in winter and towards the topographic lowest part in summer. In areas where subterranean airflows are likely to occur, radon measurements performed both in summer and in winter provide the best estimate of annual average indoor radon concentrations, and assessments of indoor radon concentrations based on single soil gas measurements are not recommended.  相似文献   

9.
In an effort to quantify the geogenic radon soil–gas potential and appraise the use of radon technique as a geological mapping tool in a crystalline basement rock terrain of Ile–Ife Nigeria, radon measurement concentration were made using a radon detector instrument (EDA RD-200) that measures radon isotopes by a scintillator cell coupled to a photomultiplier tube. The data were collected from soils derived from three different lithologic rock units. The observed values were then correlated with the geology of the area. Significant differences in the radon soil–gas concentrations among the three geologic units were observed. Granite gneiss has the highest concentration, followed by grey gneiss and mica schist in that order. The geometric mean (GM) concentration of radon-222 measured in soils directly overlying the three different rock types were 301.4 pCi/l for granite gneiss, 202.8 pCi/l for the grey gneiss, and 199.4 pCi/l for mica schist. Conversely, the average values for radon-220 averaged 1510.0, 815.4, and 733.0 pCi/l for granite gneiss, grey gneiss, and mica schist rocks, respectively. Statistical t test (α=0.05) results indicated that there was no significant difference in the geometric mean of radon soil–gas measured between low and medium potential zones. However, significant differences were found between the low and high radon potential zones, and between the medium and high zones. The low concentrations of radon soil–gas emission observed in this study is explained in terms of the seasonal variation due to thermal convection fluid movement, while the radon concentrations were found to be controlled by the lithology and geochemistry of the underlying bedrock.  相似文献   

10.
A study of the indoor radon gas levels was performed in 935 homes in Scania, southernmost Sweden, located on geologically different ground with regard to uranium (U) content. In one of these two areas the bedrock consists of alum shale with U contents exceeding 200 ppm. In the other area there is no U-rich bedrock. Indoor radon levels are influenced by U content and permeability as shown below.For maam nancy for table, please place here. Thanx!The results show that the indoor radon levels were highest in homes located on bedrock with medium to high U content combined with a highly permeable drift covering the bedrock. The difference was statistically significant(P < 0.0001). Other results of the investigation are: 14 homes built from aerated concrete made from U-rich alum shale had higher levels than 767 homes with walls from other material (312 vs 106 Bq/m3;P = 0.0011); 242 homes with a cellar had lower radon levels than 563 without (62 vs 138 Bq/m3;P <0.0001); further, 418 homes with private well had higher levels than 360 with public water supply (140 vs 82 Bq/m3;P <0.0001). The results of the investigation show a profound effect of a combination of high bedrock U content and high cover permeability. The effect of the uraniferous drift on the indoor radon levels is evident. Thus, the geological conditions should be carefully considered when screening for high-risk buildings, as well as when planning for new ones. Also, the construction of the building and its water supply have some influence.  相似文献   

11.
 Radon-prone areas in Israel were mapped on the basis of direct measurements of radon (222Rn) in the soil/rock gas of all exposed geological units, supported by the accumulated knowledge of local stratigraphy and sub-surface geology. Measurements were carried out by a modified alpha-track detection system, resulting in high radon levels mainly in rocks of the Senonian-Paleocene-aged Mount Scopus Group, comprised of chert-bearing marly chalks, rich in phosphorite which acts as the major uranium source. Issues of source depth, seasonal variations and comparison with indoor radon levels are addressed as well. This approach could be applied to other similar terrains, especially the Mediterranean Phosphate Belt.  相似文献   

12.
Radon levels were surveyed in 517 monitoring wells constructed in five major groundwater areas of Taiwan. The radon concentration in groundwater samples varied in a wide range from below the detection limit of 18 pCi/L up to 1,100 pCi/L. A worldwide comparison of reported groundwater radon levels was conducted. Overall radon levels in Taiwan groundwater are relatively low compared to other countries because the geology of Taiwan is mainly comprised of sedimentary rocks. Among the 517 wells monitored, only five wells were found with radon concentrations higher than 500 pCi/L. These five wells are all located near the Chaochou Fault in the Pingtung Plain. This study suggests that well sites near the Chaochou Fault could be good locations to monitor radon anomalies for earthquake prediction and should be avoided for developing domestic water supply. In the recharge area near the Chaochou Fault, the radon concentration in groundwater from shallow wells was approximately 1/2 to 1/4 of that from deep wells in the same cluster.
Resumen Se investigaron los niveles de radón en 517 pozos de monitoreo, construidos en las cinco mayores áreas de agua subterránea de Taiwan. La concentración de radón en las muestras de agua subterránea varía en un rango amplio, desde inferior al límite de detección que es 18 pCi/L hasta 1,100 pCi/L. Se realizó una comparación a escala mundial de los niveles de radón reportados en agua subterránea. En general los niveles de radón presente en el agua subterránea de Taiwan, son relativamente bajos comparados con otros países, puesto que la geología de Taiwan está compuesta de rocas sedimentarias. Entre los 517 pozos monitoreados, solamente en cinco se encontraron concentraciones de radón mayores a 500 pCi/L. Estos cinco pozos están todos localizados cerca de la falla ChaoChou en la Planicie de PingTung. El presente estudio sugiere que los pozos cercanos a la falla Chaochou, podrían ser buenos sitios para monitorear anomalías de radón para la predicción de terremotos y deberían evitarse para los desarrollos de abastecimiento de agua potable. En la zona de recarga cerca de la falla Chaochou, la concentración de radón en agua subterránea obtenida en pozos someros, fue aproximadamente de &frac; a &frac; de aquella en pozos profundos ubicados en el mismo sector.

Résumé On a mesuré les taux de Rn dans 517 forages ouverts dans cinq aquifères majeures de Taiwan. Les concentrations en Rn couvrent un domaine très large, à partir de valeurs très basses, au dessous de la limite de détection de 18pCi/l jusquaux valeurs assez grandes de 1100pCi/l. On a mené une analyse comparative avec des valeurs mentionnées en littérature. Par report aux valeurs mesurées en autres pays, les concentrations en Rn en Taiwan sont asses basses, compte que la structure géologique de Taiwan est constituée surtout par des roches sedimentaires. On a trouvé des concentrations au desuss de 500pCi/l seulement en cinq de 517 forages investigués. Tous ces cinq forages se trouvent au voisinage de la faille de Chaochou dans la plaine de Pingtung. Cet étude suggere que les forages situés près de la faille de Chaochou peuvent bien monitoriser les anomalie de Rn pour la prédiction des séismes mais doivent être évités lorsqil sagit de lalimentation en eau potable. Dans la zone de recharge près de la faille de Chaochou les concentrations en Rn mesurées dans les puits peu profondes representent 1/2-1/4 de ceux mesurées dans les forages de profondeur.
  相似文献   

13.
Tropical rain forest areas are well known for problems with geological mapping because of the dense vegetation and thick overburden. The application of soil-gas radon measurements was carried out over known and suspected fault zones in the basement terrains of Ile-Ife, southwestern Nigeria. Radon concentration in the area ranged from 25.6 to 6,227.8 pCi/l, with distinct contrasts and overlap in concentrations among soil groups derived from various rock types. Radon concentrations in the soil exhibit a strong dependence on the local geology and reflect the bedrock geochemistry. Relatively high radon soil-gas concentrations of between 4,000 and 6,227.8 pCi/l were found directly on the axis of the known and suspected strike slip faults. The use of the radon-222 technique confirms its application as a useful tool in geological and structural mapping in basement terrains largely covered by relatively thick overburdens.  相似文献   

14.
Indoor radon mapping and its relation to geology in Hungary   总被引:2,自引:0,他引:2  
Indoor radon mapping may show stronger dependence on geological formations if the measured homes are one-storied houses with no basement. In Hungary, 17,244 homes were investigated on the yearly average of indoor radon concentrations; among these homes, there were 6,154, one-storied, no-basement houses. In Hungary, 21 geological units were created relevant for indoor radon index characterized by lithology, the position of the ground water table, and the gas permeability. Maps were drawn of different topography (counties, grid, geological units) and different values (maximum, mean, indoor radon indexes). A kind of standardization of houses was that only the one-storied, no-basement ones were chosen, but from geological point of view some more information was gained when the wall materials (bricks or adobe) were also taken into account. (“Adobe” is made of clay and straw in Hungary, and not burned as brick, just dried on sunshine). Enhanced indoor radon values can be observed on the bedrock of Cenozoic volcanic rocks and their eroded materials deposited on the local alluvial valleys. Another group with relatively increased indoor radon values can be connected to granite bodies. The grid method is useful for covering large state or even continental areas. For practical public use and detailed radon risk mapping geological or administrative unit-systems could yield more reasonable and useful results.  相似文献   

15.
The incidence of lung cancer in the Gejiu area of Yunnan Province ranks the first in the world.The radon level(indoor,soil) was measured in the Gejiu area by the SSNTD method from 1990 to 1996,The result indicates an extensive high-level of indoor radon in that area though U and Th are lower in local limestones,The indoor radon level of houses located in the geologic fault zone is 6 times high that 2km far from the fault zone.The reason probably is that the radon level of soil in the fault is 6-8 times high that 1 km far from the faults.our data indicate that a lower range of radon levels,0-100Bq.m^-3,exists in healthy families.However,a higher radon level,over 800 Bq.m^-3,is often found corresponding to that of cancer patients‘ homes(the house-owners are suffering from either lung cancer or leukaemia or liver cancer),Obviously,an increase in lung cancer incidence follows an increase in indoor radon level,The risk of cancer induced by indoor radon is no longer an inference,but a fact.  相似文献   

16.
Radon is a naturally occurring colourless and odourless radioactive gas that is soluble in water and is the main source of radioactivity of groundwater. Use of radon contaminated groundwater increased the radon levels in the air, especially in poorly ventilated houses, which is hazardous to health. Ingestion of such water for quite long period may lead to stomach cancer. The drinking water standards proposed by the Bureau of Indian Standards (BIS) exclude the permissible concentration of radon in drinking water. The US Environmental Protection Agency (USEPA) in 1991 proposed a Maximum Concentration Level (MCL) of 11.1 Bq/l for public water supply. The water samples from the bore wells in Tumkur district of Karnataka show radon concentrations in the range of 5 to 250 Bq/l. Ninety percentages of the samples show radon levels above the permissible limit as per USEPA. The spatial variation and geological control over radon concentration in groundwater in the area and sampling sensitivity are discussed here. The study was conducted during March 2012.  相似文献   

17.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

18.
 Two test cases from Israel are presented herein employing the decay rate of radon along the flow path to assess groundwater flow velocities. Groundwater flow reaching the fault zone emerges in several places along the rift fault zone as thermal springs because of deep water confinement. The high water temperature of the surface is indicative of high vertical flow velocities, which maintains the original high temperatures. Knowing the Rn content at a source point and at a given down-gradient, and assuming no Rn addition from the water itself or along the flow path, one can calculate the flow velocity based on the Rn half-life time. The decay of Rn in western Galilee was found to be ∼570–150 pCi/l, and in the Dead Sea area from 5000–2000 pCi/l along a respective flow path of 1000 and 200 m, Based on the above, the calculated flow velocities were compared with those obtained from pumping tests in the study area. The method is applicable, because of the short Rn half-life, to cases of high Rn contents, short distances and high flow velocities. Received: 18 January 2000 · Accepted: 21 March 2000  相似文献   

19.
Soil gas radon release patterns have been monitored continuously for more than 3 years in the Eastern Mediterranean Province (EMP) (Southern Turkey), alongside regional seismic events, providing a multidisciplinary approach. In the period from January 2008 to January 2011, 14 earthquakes M L ≥4 occurred in the study area. By monitoring the sites for more than 3 years, the site-characteristic patterns of soil radon emanation of each site have become evident. Radon emanation data show seasonal (semi-annual) variation characteristics; high soil radon values are between May and October and low soil radon values are between November and April. With available rainfall data, the soil gas radon data can be more reliably evaluated. It is shown in this paper that if radon emanation data are available over sufficiently long periods of time and baseline data (and their seasonal variations) are known with certainty for each monitoring site, then the observation of positive anomalies might provide a correlation or connection to seismic activity.  相似文献   

20.
 The purpose of this study was to compare regional patterns of indoor radon concentration with uranium-bearing rock zones and county populations in Texas. Zones yielding radon concentrations that are relatively high for Texas include shale and sandstone in northwest Texas; red beds in north-central Texas; felsic volcanic rocks in west Texas; and sandstone, limestone, and igneous rocks in central Texas. Located in northwest Texas, only five of the 202 counties evaluated have mean indoor radon concentrations above 4.0 pCi l–1. Two of those counties have populations above the state median of 20 115. The highest county mean concentration is 8.8 pCi l–1. Results of this study suggest that (1) regional geology influences indoor radon concentrations in Texas, (2) statewide, the radon concentrations are relatively low, (3) highly populated counties do not coincide with regions of high indoor radon concentration, and (4) regions that may warrant further monitoring include northwest Texas and, to a lesser degree, west and central Texas. Received: 8 August 1995 · Accepted: 6 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号