首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wave forces acting on submerged circular cylinders moving forward with a constant velocity in regular waves are investigated experimentally. Hydrodynamic forces acting on the cylinder forced to surge in a steady are also measured and hydrodynamic coefficients were obtained. Wave force coefficients obtained from wave force measurements are compared with the hydrodynamic coefficients from surging tests, and the similarity and difference between them are discussed. Experiments show that these coefficients are quite different from those of the cylinder without a forward velocity.  相似文献   

2.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

3.
本文对内孤立波作用下圆柱体的水动力特性进行了数值研究。对不同直径、不同水深比、不同浸没深度的圆柱进行了水平方向受力分析,从多个因素出发,研究了内孤立波对水下竖直圆柱的水平作用情况。通过分析水平作用力和力矩的时程曲线,得到内孤立波行进过程中对于圆柱体的横向作用力和力矩与时间的关系。通过对比不同工况下内孤立波橫向作用力幅值,得到内孤立波作用力幅值与圆柱直径、水深比以及浸没深度的关系。结果表明,内孤立波横向作用力(力矩)幅值与圆柱直径呈线性相关关系,但与水深比相关关系不明显,随着圆柱浸没深度的增加,内孤立波横向作用力幅值呈现出先增大后减小的趋势。  相似文献   

4.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2  
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

5.
This paper deals with the random forces produced by high ocean waves on submerged horizontal circular cylinders. Arena [Arena F, Interaction between long-crested random waves and a submerged horizontal cylinder. Phys Fluids 2006;18(7):1–9 (paper 076602)] obtained the analytical solution of the random wave field for two dimensional waves by extending the classical Ogilvie solution [Ogilvie TF, First- and second-order forces on a cylinder submerged under a free surface. J Fluid Mech 1963;16:451–472; Arena F, Note on a paper by Ogilvie: The interaction between waves and a submerged horizontal cylinder. J Fluid Mech 1999;394:355–356] to the case of random waves. In this paper, the wave force acting on the cylinder is investigated and the Froude Krylov force [Sarpkaya T, Isaacson M, Mechanics of wave forces on offshore structures, Van Nostrand Reinhold Co.; 1981], on the ideal water cylinder, is calculated from the random incident wave field. Both forces represent a Gaussian random process of time. The diffraction coefficient of the wave force is obtained as quotient between the standard deviations of the force on the solid cylinder and of the Froude Krylov force. It is found that the diffraction coefficient of the horizontal force Cdo is equal to the Cdv of the vertical force. Finally, it is shown that, since a very large wave force occurs on the cylinder, it may be calculated, in time domain, starting from the Froude Krylov force. It is then shown that this result is due to the fact that the frequency spectrum of the force acting on the cylinder is nearly identical to that of the Froude–Krylov force.  相似文献   

6.
The linear three-dimensional problem of ice loads acting on a vertical circular cylinder frozen in an ice cover of infinite extent is studied. The loads are caused by an uni-directional hydroelastic wave propagating in the ice cover towards the cylinder mounted to the see bottom in water of constant depth. There are no open water surfaces in this problem. The deflection of the ice cover is described by the Bernoulli–Euler equation of a thin elastic plate of constant thickness. At the contact line between the ice cover and the surface of the cylinder, some edge conditions are imposed. In this study, the edge of the ice plate is either clamped to the cylinder or has no contact with the cylinder surface, with the plate edge being free of stresses and shear forces. The water is of finite constant depth, inviscid and incompressible. The problem is solved by both the vertical mode method and using the Weber integral transform in the radial coordinate. Each vertical mode corresponds to a root of the dispersion relation for flexural-gravity waves. It is proved that these two solutions are identical for the clamped edge conditions. This result is non-trivial because the vertical modes are non-orthogonal in a standard sense, they are linearly dependent, the roots of the dispersion relation can be double and even triple, and the set of the modes could be incomplete. A general solution of the wave-cylinder interaction problem is derived by the method of vertical modes and applied to different edge conditions on the contact line. There are three conditions of solvability in this problem. It is shown that these conditions are satisfied for any parameters of the problem.  相似文献   

7.
S.Y. Boo   《Ocean Engineering》2006,33(2):219-233
Wave forces on a vertical truncated circular cylinder in Stokes waves with the wave slopes ranging from 0.06 to 0.24, are measured in a wave tank. The higher harmonic wave forces are compared with the available values from theories of the FNV (Faltisen–Newman–Vinje) model and Varyani solution. The first harmonic horizontal forces measured are much larger than the theoretical values from the FNV model, while the first harmonic vertical forces are well predicted by the Varyani theory. It was also found that the FNV model significantly overpredicts the second harmonic horizontal forces in high frequency waves, but under predicts the third harmonic forces. The differences between the actual measurement and the theory, in the second and third harmonic horizontal forces, become smaller at low wave frequencies as the wave slope increases. In addition, the transverse instabilities in the incoming waves with high wave slope were observed, which is due to the nonlinear modulation. Measurements were, thus, carried out before the instability occurred.  相似文献   

8.
A numerical boundary integral equation method combined with a non-linear time stepping procedure is used for the calculation of wave forces on a large, submerged, horizontal circular cylinder. As the method is based on potential theory, all computations are performed in the inertia dominated domain, that is, for small Keulegan-Carpenter numbers. Computations are carried out for the Eulerian mean current under wave trough level equal to zero. When the cylinder is moved towards the sea bed the computations show that the inertia coefficients increase significantly, which is associated with a blockage effect. Furthermore, the effect of the wave steepness is reduced when the submergence of the cylinder is increased. In the vicinity of the free water surface the vertical inertia coefficient is highly dependent upon the wave steepness, which tends to reduce it, whereas the horizontal inertia coefficient is only slightly dependent on the wave steepness. Computations are also carried out for cylinder diameters comparable with the wave length. Finally, inertia coefficients computed by the present method are compared with some analytical results by Ogilvie [(1963), First and second order forces on a cylinder submerged under a free surface. J. Fluid Mech. 16, 451–472]. As long as the assumptions leading to Ogilvie's theory are fulfilled (cylinder radius small compared to the wave length), the results are quite similar.  相似文献   

9.
Linear and nonlinear irregular waves and forces in a numerical wave tank   总被引:4,自引:0,他引:4  
A time-domain higher-order boundary element scheme was utilized to simulate the linear and nonlinear irregular waves and diffractions due to a structure. Upon the second-order irregular waves with four Airy wave components being fed through the inflow boundary, the fully nonlinear boundary problem was solved in a time-marching scheme. The open boundary was modeled by combining an absorbing beach and the stretching technique. The proposed numerical scheme was verified by simulating the linear regular and irregular waves. The scheme was further applied to compute the linear and nonlinear irregular wave diffraction forces acting on a vertical truncated circular cylinder. The nonlinear results were also verified by checking the accuracy of the nonlinear simulation.  相似文献   

10.
三维随机波浪对桩柱的作用   总被引:4,自引:1,他引:4  
俞聿修  张宁川  赵群 《海洋学报》1998,20(4):121-132
试验研究了三维随机波浪作用于垂直圆柱上的作用力.采用二维波浪的方法计算三维波浪力,研究了各波力系数随KC数和波浪方向分布的变化规律,并对三维波力和二维波力进行了对比分析.  相似文献   

11.
The research into hydrodynamic loading on ocean structures has concentrated mostly on circular cross-section members and relatively limited work has been carried out on wave loading on other cross-sections such as rectangular sections. These find applications in many offshore structures as columns and pontoons in semi-submersibles and tension-leg platforms. The present investigation demonstrates the behaviour of rectangular cylinders subject to wave loading and also supplies the hydrodynamic coefficients for the design of these sections.This paper presents the results of wave forces acting on a surface piercing truncated rectangular cylinder set vertically in a towing tank. The experiments are carried out in a water depth of 2.2 m with regular and random waves for low Keulegan–Carpenter number up to 6. The rectangular cylinder is of 2 m length, 0.2 m breadth and 0.4 m width with a submergence depth of 1.45 m from still water level. Based on Morison equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter β, for two aspect ratios of cylinders, equals to 1/2 and 2/1. Drag and inertia coefficients obtained through regular wave tests are used for the random wave analysis to compute the in-line force spectrum.The results of the experiments show the drag and inertia coefficients are strongly affected by the variation in the aspect ratios of the cylinder. The drag coefficients decreases and inertia coefficients increases with increase in Keulegan–Carpenter number up to the range of KC number tested. The random wave results show a good correlation between measured and computed force spectrums. The transverse forces in both regular and random waves are found to be small compared to in-line forces.  相似文献   

12.
The second-order difference-frequency wave forces on a large three-dimensional body in multi-directional waves are computed by the boundary integral equation method and the so-called FML formulation (assisting radiation potential method). Semi-analytic solutions for a bottom-mounted vertical circular cylinder are also developed to validate the numerical method. Difference-frequency wave loads on a bottom-mounted vertical cylinder and stationary four legs of the ISSC tension-leg platform (TLP) are presented for various combinations of incident wave frequencies and headings. These force quadratic transfer functions (QTF) can directly be used in studying slowly varying wave loads in irregular short-crested seas described by a particular directional spectrum. From our numerical results, it is seen that the slowly varying wave loads are in general very sensitive to the directional spreading function of the sea, and therefore wave directionality needs to be taken into account in relevant ocean engineering applications. It is also pointed out that the uni-directionality of the sea is not necessarily a conservative assumption when the second-order effects are concerned.  相似文献   

13.
Linearized water wave theory is used to show that a submerged long circular cylinder suitably constrained by springs and dampers to make small harmonic oscillations, can be extremely efficient in absorbing the energy in an incident regular wave whose crests are parallel to the axis of the cylinder. Experimental results are described which confirm the theory for small amplitude waves and which suggest that the device can still be fairly efficient in waves of moderate amplitude.  相似文献   

14.
This paper considers higher-harmonic forces due to wave focusing on a vertical circular cylinder. A series of experiments has been conducted in a wave flume. The first six-harmonic components of the measured wave forces are analyzed using the scale-averaged wavelet spectrum. It is noted that due to the transient nature of focused (freak) waves, Fourier analysis would not provide equivalent information to that gleaned from the analyses used herein. The results for the experiments with very steep wave crests show significant amplitudes at the fourth and fifth harmonics. These harmonics exhibit amplitudes that are the same order as the second harmonic, but much larger than those of the third harmonic. The wavelet-based bicoherence is used to detect the quadratic nonlinearity of the measured forces. And the bicoherence spectra reveal the primary mathematical reason for the existence of the striking amplitudes of the fourth and fifth harmonics: the interaction between the lower-harmonic components couple more strongly with the fourth and fifth harmonics, thus the fourth and fifth harmonics glean more energy than those of the third-harmonic components. However, the physical explanation for this remains elusive.  相似文献   

15.
两层流体中振荡水平圆柱潜体水动力特性   总被引:2,自引:1,他引:1  
研究了有限深两层流体中水平圆柱潜体的振荡辐射问题。在线性势流理论框架内,建立求解辐射势的多极展开理论,提出附加质量和阻尼系数的计算方法,进行了数值计算分析,并且与均匀流中的情况进行比较。结果表明,在圆柱潜体的某个振荡频率范围内,流体的分层效应对其附加质量和阻尼系数是有重要影响的。同时,对水平圆柱潜体振荡产生的自由面和内界面波动特性进行了数值分析。  相似文献   

16.
A train of regular surface waves is incident upon a fixed, half-immersed, circular cylinder; the waves are partially reflected and partially transmitted, and also induce hydrodynamic forces on the cylinder. In order to give a theoretical study of this problem, we make the familiar assumptions of classical hydrodynamics and then solve the linear, two-dimensional, diffraction boundary-value problem, using Ursell's multipole method. Accurate numerical results are presented (in the form of tables) for four important (complex) quantities; these are the reflection and transmission coefficients, and two dimensionless coefficients which describe the horizontal and vertical forces on the cylinder. We have also made an experimental study, in which we measured the forces on the cylinder, and the reflection coefficient. These measurements are compared with the linear theory, and also with other experimental data; discrepancies are noted and an attempt to analyse them is made. We have also measured the mean horizontal forces on the cylinder; these results are compared with the predictions of a simple formula obtained by Longuet-Higgins.  相似文献   

17.
Wave-force coefficients of horizontal circular cylinders inclined with respect to the incoming waves, are studied numerically under conditions when the effects of flow separation are insignificant. The mathematical model is set in terms of a boundary-value problem for the velocity potential of the wave, which is formulated under the assumption of the linear diffraction theory, and solved numerically by the boundary element method. The numerical calculations are performed in the vertical plane, assuming uniform water depths in the direction along the axis of the cylinder. A first-order correction to the pressures is introduced to take account of the asymmetry of the velocity field around the cylinder when it is close to the plane bed. The correction procedure is found to be highly effective in computing the transverse forces for small gap ratios. The numerical results show that irrespective of the values of the gap ratio, the in-line forces are always sensitive to the wave directionality. The transverse forces, however, show sensitivity only for the smaller gap ratios. It is also shown that by accounting for the wave directionality effects in the wave kinematics only, the forces could be estimated to a certain extent by using the hydrodynamic force coefficients of inertia and lift corresponding to the normal waves.  相似文献   

18.
Second-order wave forces on a large diameter vertical circular cylinder, computed according to a semi-analytic nonlinear diffraction theory, are compared to results of 22 laboratory experiments with regular waves. In general, predicted forces agree quite well with measured forces. In most tests, both measured and predicted maximum forces exceeded linear theory by 5 to 15%. In a few cases, however, the measured forces were less than those predicted by linear theory, in contrast to the second-order predictions. It is shown that these results are related to the phasing of various linear and nonlinear wave force components, and are consistent with those obtained by other investigators.  相似文献   

19.
Fully nonlinear interactions between water waves and vertical cylinder arrays in a numerical tank are studied based on a finite element method (FEM). The three-dimensional (3D) mesh is constructed through an extension of a 2D Delaunay surface grid along the vertical line. The velocity potential is obtained by solving a linear matrix system of FEM, and a difference scheme is then used to calculate the velocity on the free surface to track its movement. Waves and hydrodynamic forces are obtained for both bottom mounted and truncated cylinders. The simulations have provided many results to show the nature of mutual interference between cylinders in arrays and its effects on waves and forces at the nearly trapped mode frequency. The effect of the tank wall on waves and forces has been investigated, and the nonlinear features of waves and forces have also been discussed.  相似文献   

20.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号