首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Despite a wealth of research on the patterns and timing of glaciation in Glen Roy over the last 150 years, glacial events within Glen Turret remain heavily debated. These debates centre on the extent and source of Loch Lomond Stadial (Younger Dryas) ice in Glen Turret, and the implications for the age and genesis of the Turret Fan. Here we present details of recent systematic geomorphological mapping of Glen Turret and the neighbouring valleys to the north and east. The geomorphological evidence recorded indicates a plateau icefield style of glaciation centred on the Carn Dearg plateau, of which the Turret Glacier was an outlet. A morphostratigraphical approach is used to identify a relative chronology of glacial events, and suggests that the Turret Fan may have formed prior to the Loch Lomond Stadial. A reconstruction of the Carn Dearg plateau icefield is presented, which was connected to the larger Monadhliath Icefield to the east. Equilibrium line altitudes for the outlet glaciers range from 560 ± 20 m to 646 ± 20 m and are comparable with those calculated for surrounding regions. This research suggests that the Turret Fan is predominantly an older feature that was deposited by a more extensive plateau ice-sourced Turret Glacier prior to the Loch Lomond Stadial, most likely during or immediately after deglaciation of the last ice sheet.  相似文献   

2.
New lithostratigraphical, pollen-stratigraphical and tephrostratigraphical data are presented for a sediment sequence at Turret Bank, a site that lies close to the confluence of the River Turret with the River Roy in Lochaber, the western Scottish Highlands. The site is also adjacent to the inner margin of a major gravel fan, the Glen Turret Fan, the age of which has been debated and has a crucial bearing on the overall sequence of events in Glen Roy, especially concerning the maximum limit of Loch Lomond Readvance (Younger Dryas) ice. Several lines of evidence point to the sediment sequence at Turret Bank having been wholly deposited during the Loch Lomond Stadial-early Holocene transition: (i) the pollen sequence is typical for this transitional period; (ii) varved deposits preserved in the sequence bear a strong resemblance to mid-Stadial varves in a regional master varve scheme for Glen Roy and vicinity (the Lochaber Master Varve Chronology); and (iii) an early Holocene tephra – the Askja-S Tephra – is preserved within the sequence. Some limitations with the new data are considered, but it is concluded that the coherent integration of lithostratigraphic, geomorphological, pollen-stratigraphical and tephrostratigraphical data point to the likelihood that Loch Lomond Readvance ice extended to the inner margin of the Glen Turret Fan, and that the fan was probably constructed by glacial meltwaters at this time.  相似文献   

3.
Over the past 200 years significant research effort has gone into explaining the origin of the obvious former shorelines in Glen Roy (the so-called “Parallel Roads”). The large gravel deposit at the mouth of Glen Turret has attracted similar interest, but a solution to its origin and age remains contested: the same applies to the associated gravel fans in upper Glen Roy. This paper presents the results of systematic mapping and instrumental levelling of these features and new evidence from two previously unrecorded gravel fans in the nearby Allt Chonnal valley. Interpretation of altitudinal and lithofacies data indicates that all the fans (including the one at the mouth of Glen Turret) were deposited in a series of ice-dammed lakes during the Loch Lomond Stadial (Younger Dryas). The largest gravel fans were deposited in the shallow lake heads of the 260 m, 325 m and 350 m lakes in upper Glen Roy, infilling these areas to the extent that deposition was in part subaerial. The absence of foreset bedding from the deposits is explained by the relatively shallow depth of lake waters, which inhibited development of classic Gilbert-type deltas and encouraged Hjulström-type fans. The previous assumption that gravel deposition into the 325 m and 350 m lakes was relatively limited is shown to be erroneous. The Allt Chonnal gravel fans, deposited into these lakes, have an estimated combined volume of 6,000,000 m3 deposited in about 200 years. Significant gravel deposition into these former lakes continued at least until glaciers started to retreat in Glen Roy. When glacier retreat began, gravel deposition was reduced by over 85%. This research also concludes that the glacier which deposited the Turret fan emanated from Glen Gloy, supplied not only by ice from the south but also from ice that spilled into Glen Gloy from the adjacent Great Glen. The Loch Lomond Stadial (LLS) ice cap mapped in the Monadhliath Mountains was connected to the west Highland ice cap, which at the time filled the Great Glen. Regional equilibrium line altitude (ELA) estimates, based solely on the Monadhliath LLS ice cap evidence, may therefore be altitudinally too high.  相似文献   

4.
A sedimentological investigation of new sections of Loch Lomond Stadial (LLS) age deposits is presented from Caol Lairig valley, located adjacent to Glen Roy, Lochaber, Scottish Highlands. The ice lobes in Caol Lairig and Glen Roy blocked local fluvial drainage systems forming lakes that cut shorelines, the ‘Parallel Roads of Glen Roy’ (Agassiz, 1840; Jamieson, 1863, 1892). Within Caol Lairig sediment sequences of proximal, distal and deltaic glaciolacustrine sediments and a subglacial till are reported. The till was deposited during ice advance into the valley and the different glaciolacustrine facies formed in the gap between the head of Caol Lairig and the receding ice margin. When the sediments are related to the shoreline and glacial geomorphological evidence, phases of ice advance and ice retreat and the concomitant changes in lake levels are identified. Initially ice retreat in Glen Roy and Caol Lairig was synchronous but after the fall to 325 m the ice in Glen Roy retreated more quickly than in Caol Lairig. Differences in the ice thickness and the lake water depth in Glen Roy and Caol Lairig may have lead to preferential calving of the Glen Roy ice margin hastening ice retreat.  相似文献   

5.
This paper introduces a special issue devoted to the sequence of events in and around Glen Roy during the Loch Lomond or Younger Dryas Stadial, the short but important cold period dated to between ∼12,900 and 11,700 years ago, during which glaciers last expanded to occupy the Scottish Highlands, and during the subsequent transition to warmer conditions at the start of the Holocene. The Glen Roy area is internationally famous for the ‘Parallel Roads’, pre-eminent examples of ice-dammed lake shorelines which were formed during the stadial. What makes these shorelines unique, however, is their role as distinctive time markers, allowing the order of formation of landforms and sediments to be construed with unprecedented detail. Varved lake sediments preserved within Glen Roy and nearby Loch Laggan provide a precise timescale – the Lochaber Master Varve Chronology (LMVC) – for establishing the rates and timing of some of the events. This introductory paper first sets the geological context for those new to this topic, with a digest of key advances in understanding made between the nineteenth century and the publication of the LMVC in 2010. It then summarises the evidence and ideas that have emerged from new research investigations reported in this special issue for the first time, and which shine new light on the subject. Two final sections synthesise the new data and consider future prospects for further refinement of the precise sequence and timing of events. A major conclusion to emerge from this new body of work is that the ice-dammed lakes, and the glaciers that impounded them, persisted in the area until around 11,700 to perhaps 11,600 years ago. This conflicts with recently promoted suggestions that the last glaciers in Scotland were already in a state of considerable decline by ∼12,500 years ago.  相似文献   

6.
7.
A new varve diagram from the river Ångermanälven could be correlated to the postglacial varve chronology to between 4903 and 4415 varve years BP. An AMS 14C measurement on terrestrial macrofossils obtained between 4715 and 4706 varve years BP gave a calibrated age of between 5730 and 5040 calendar years BP. The discrepancy between varve and calender-year age indicates that an error or part of an error in the Swedish varve chronology may be situated between 2000 and 5000 varve years BP.  相似文献   

8.
Pollen data are well established for quantitative climate reconstructions over long timescales, including the Holocene and older interglacials. However, anthropogenically induced environmental change in central Europe was strong during the last 4 ka, challenging quantitative reconstructions of this time period. Here we present quantitative climate reconstructions based on pollen analyses and evaluate them with the peat humification record and the stable carbon isotopes of Sphagnum plant material (δ13Ccellulose). All analyses were carried out on the same 7.5 m long, largely ombrotrophic peat bog section from Dürres Maar. Three different methods were used for the quantitative climate reconstructions on the basis of the pollen data: (1) a probabilistic indicator taxa approach (the ‘pdf method’); (2) a modern analogue technique based on pollen taxa from modern surface samples (cMAT); and (3) a modern analogue technique expanded by plant functional types (pMAT). At Dürres Maar the peat humification is only affected by peat cutting during the Roman period and the Middle Ages. The stable carbon isotopes are seemingly unaffected by human impact. Thus both proxies provide independent data to evaluate the reconstructions on the basis of pollen data. The quantitative climate reconstructions on the basis of the individual methods are in general relatively similar. Nevertheless, distinct differences between the individual approaches are also apparent, which could be attributed to taxa that reflect human impact on a local to regional scale. While the pdf method appears to be relatively robust to all observed anthropogenically induced vegetation changes, it potentially underestimates climate variability. This method is therefore expected to be independent of local site characteristics and to provide robust quantitative estimates of climatic trends rather than of climatic variability of small amplitude. This is of value for palaeoclimate reconstructions of older interglacials, for which neither multiple sites nor independent climate proxies are available for comparison. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号