首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sedimentological investigation of new sections of Loch Lomond Stadial (LLS) age deposits is presented from Caol Lairig valley, located adjacent to Glen Roy, Lochaber, Scottish Highlands. The ice lobes in Caol Lairig and Glen Roy blocked local fluvial drainage systems forming lakes that cut shorelines, the ‘Parallel Roads of Glen Roy’ (Agassiz, 1840; Jamieson, 1863, 1892). Within Caol Lairig sediment sequences of proximal, distal and deltaic glaciolacustrine sediments and a subglacial till are reported. The till was deposited during ice advance into the valley and the different glaciolacustrine facies formed in the gap between the head of Caol Lairig and the receding ice margin. When the sediments are related to the shoreline and glacial geomorphological evidence, phases of ice advance and ice retreat and the concomitant changes in lake levels are identified. Initially ice retreat in Glen Roy and Caol Lairig was synchronous but after the fall to 325 m the ice in Glen Roy retreated more quickly than in Caol Lairig. Differences in the ice thickness and the lake water depth in Glen Roy and Caol Lairig may have lead to preferential calving of the Glen Roy ice margin hastening ice retreat.  相似文献   

2.
Over the past 200 years significant research effort has gone into explaining the origin of the obvious former shorelines in Glen Roy (the so-called “Parallel Roads”). The large gravel deposit at the mouth of Glen Turret has attracted similar interest, but a solution to its origin and age remains contested: the same applies to the associated gravel fans in upper Glen Roy. This paper presents the results of systematic mapping and instrumental levelling of these features and new evidence from two previously unrecorded gravel fans in the nearby Allt Chonnal valley. Interpretation of altitudinal and lithofacies data indicates that all the fans (including the one at the mouth of Glen Turret) were deposited in a series of ice-dammed lakes during the Loch Lomond Stadial (Younger Dryas). The largest gravel fans were deposited in the shallow lake heads of the 260 m, 325 m and 350 m lakes in upper Glen Roy, infilling these areas to the extent that deposition was in part subaerial. The absence of foreset bedding from the deposits is explained by the relatively shallow depth of lake waters, which inhibited development of classic Gilbert-type deltas and encouraged Hjulström-type fans. The previous assumption that gravel deposition into the 325 m and 350 m lakes was relatively limited is shown to be erroneous. The Allt Chonnal gravel fans, deposited into these lakes, have an estimated combined volume of 6,000,000 m3 deposited in about 200 years. Significant gravel deposition into these former lakes continued at least until glaciers started to retreat in Glen Roy. When glacier retreat began, gravel deposition was reduced by over 85%. This research also concludes that the glacier which deposited the Turret fan emanated from Glen Gloy, supplied not only by ice from the south but also from ice that spilled into Glen Gloy from the adjacent Great Glen. The Loch Lomond Stadial (LLS) ice cap mapped in the Monadhliath Mountains was connected to the west Highland ice cap, which at the time filled the Great Glen. Regional equilibrium line altitude (ELA) estimates, based solely on the Monadhliath LLS ice cap evidence, may therefore be altitudinally too high.  相似文献   

3.
This paper presents a new interpretation of the sequence of events in Glen Roy and vicinity during the Loch Lomond Stadial that can be inferred from a detailed varve record constructed by Palmer et al. (2010). 300 years of Younger Dryas glacier advance in the Scottish Highlands are recorded by very thin varves formed in an ice-dammed lake up to 35 km long. At a varve site now occupied by Loch Laggan the lake stood permanently at 260 m, but in Glen Roy varves were also laid down in a lake at 325 m and, later, 350 m caused by glacier advance. Initial ice retreat recorded by a gradual increase in varve thickness was soon followed by much thicker varves. The varve sequences are interrupted by a sand bed caused by sudden drainage of the 350 m lake. The major varves of the Glen Roy sequence show that storminess was still increasing in intensity at least 160 years after glacier retreat had begun. At the Loch Laggan site 15 cm of deformed sediments register an earthquake that produced 3 m faulted uplift of all three Glen Roy shorelines, a response to the abrupt removal of 5 km3 of water when the 260 m lake was catastrophically drained by jökulhlaup. The deformed sediments are immediately followed by varves deposited in a local lake, ice-dammed lake sedimentation now having ceased, having lasted more than 460 years.  相似文献   

4.
This paper introduces a special issue devoted to the sequence of events in and around Glen Roy during the Loch Lomond or Younger Dryas Stadial, the short but important cold period dated to between ∼12,900 and 11,700 years ago, during which glaciers last expanded to occupy the Scottish Highlands, and during the subsequent transition to warmer conditions at the start of the Holocene. The Glen Roy area is internationally famous for the ‘Parallel Roads’, pre-eminent examples of ice-dammed lake shorelines which were formed during the stadial. What makes these shorelines unique, however, is their role as distinctive time markers, allowing the order of formation of landforms and sediments to be construed with unprecedented detail. Varved lake sediments preserved within Glen Roy and nearby Loch Laggan provide a precise timescale – the Lochaber Master Varve Chronology (LMVC) – for establishing the rates and timing of some of the events. This introductory paper first sets the geological context for those new to this topic, with a digest of key advances in understanding made between the nineteenth century and the publication of the LMVC in 2010. It then summarises the evidence and ideas that have emerged from new research investigations reported in this special issue for the first time, and which shine new light on the subject. Two final sections synthesise the new data and consider future prospects for further refinement of the precise sequence and timing of events. A major conclusion to emerge from this new body of work is that the ice-dammed lakes, and the glaciers that impounded them, persisted in the area until around 11,700 to perhaps 11,600 years ago. This conflicts with recently promoted suggestions that the last glaciers in Scotland were already in a state of considerable decline by ∼12,500 years ago.  相似文献   

5.
The deglaciation of Skye at the close of the Loch Lomond Stadial is assessed on the basis of detailed geomorphological mapping and pollen-stratigraphic correlations. It is concluded that deglaciation proceeded in two distinct stages. The first was marked by numerous glacier stillstands and readvances, while uninterrupted retreat and local glacier stagnation occurred during the second and final stage. The pollen evidence indicates that the first stage was well advanced before the marked thermal improvement at the start of the Flandrian, and it is inferred that initial glacier retreat occurred in response to a decline in precipitation in the later part of the Loch Lomond Stadial. The first stage of glacier retreat continued into the early Flandrian, during which climatic amelioration was interrupted briefly. Final deglaciation appears to have occurred rapidly in response to sustained temperature increases. The collective evidence also indicates spatial variations in the timing of deglaciation, which appear to reflect differences in glacier morphology.  相似文献   

6.
Despite a wealth of research on the patterns and timing of glaciation in Glen Roy over the last 150 years, glacial events within Glen Turret remain heavily debated. These debates centre on the extent and source of Loch Lomond Stadial (Younger Dryas) ice in Glen Turret, and the implications for the age and genesis of the Turret Fan. Here we present details of recent systematic geomorphological mapping of Glen Turret and the neighbouring valleys to the north and east. The geomorphological evidence recorded indicates a plateau icefield style of glaciation centred on the Carn Dearg plateau, of which the Turret Glacier was an outlet. A morphostratigraphical approach is used to identify a relative chronology of glacial events, and suggests that the Turret Fan may have formed prior to the Loch Lomond Stadial. A reconstruction of the Carn Dearg plateau icefield is presented, which was connected to the larger Monadhliath Icefield to the east. Equilibrium line altitudes for the outlet glaciers range from 560 ± 20 m to 646 ± 20 m and are comparable with those calculated for surrounding regions. This research suggests that the Turret Fan is predominantly an older feature that was deposited by a more extensive plateau ice-sourced Turret Glacier prior to the Loch Lomond Stadial, most likely during or immediately after deglaciation of the last ice sheet.  相似文献   

7.
A detailed high‐resolution seismic stratigraphy, calibrated by core data and terrestrial geomorphological mapping, has been constructed for Loch Ainort, Isle of Skye. This study has provided a palaeoenvironmental history of the area as well as important corroborative evidence for the stepped deglaciation of the Loch Lomond Stadial ice‐field on Skye. The Ainort Glacier reworked pre‐Loch Lomond glacial deposits terminating in a grounded tidewater ice‐front potentially 800 m beyond the previously extrapolated limit. The first stage of deglaciation was characterised by the formation of De Geer moraines indicative of a period of interrupted retreat. The second phase, by contrast, produced hummocky relief with sporadic linear moraines suggesting periods of uninterrupted retreat with occasional stillstands/readvances. Paraglacial reworking of terrestrial slopes resulted in the deposition of thick, subaqueous, debris flows which graded into fluvioglacial dominated sediments and ultimately modern fjordic deposits. The identification of an initial period of active retreat punctuated by numerous readvances correlates directly with the terrestrial record. However, the offshore stratigraphy suggests that although the second phase was dominated by uninterrupted retreat, occasional stillstands/ readvances did occur. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Glacial geomorphology relating to the Loch Lomond Stadial (Younger Dryas) in Britain is used to construct five glacial landsystem models. These landsystems lie on a continuum of increasing ice thickness and decreasing topographic control and typify the principal styles of glaciation during the stadial. The landsystems comprise: the cirque/niche glacier landsystem, the alpine icefield landsystem, the lowland piedmont lobe landsystem, the plateau icefield landsystem and the icecap landsystem. Geomorphological features representing the icecap landsystem are present only at the centre of the West Highland Glacier Complex, which was flanked primarily by satellite alpine and plateau icefields. The cirque/niche glacier landsystem was present predominantly in areas that experienced conditions only marginally favourable for glacier development at peripheral sites. Three styles of glacier retreat are recorded by the geomorphology: active, two‐phase and uninterrupted retreat. Of these, active retreat appears to be most widespread within the Loch Lomond Stadial limits. These retreat styles reflect a combination of climatic and topographic conditions, coupled with local factors influencing the preservation of landforms from which retreat dynamics can be inferred. Likewise, the distribution of landsystems was influenced by an interplay between topography and climate, with glacier formation being facilitated in locations where topographical conditions aided in the accumulation of snow. The pattern also supports the existence of previously recognized northward and eastward precipitation gradients across Britain during the stadial.  相似文献   

9.
Between 1958 and his retirement in 1982, J.B. Sissons published some 80 articles and two books. The majority of these were devoted to aspects of the Quaternary geomorphology of Scotland, but many of his findings have much wider application. This paper reviews the six main areas in which Sissons made an outstanding research contribution. In approximate chronological order, these were as follows: (i) reassessment of the significance of meltwater channels and related fluvioglacial landforms (1958–1963); (ii) the deciphering of an extremely complex sequence of raised and buried shorelines and associated sea-level changes in eastern Scotland (1962–1972), together with reinterpretation of the age and origin of marine rock-cut platforms in western Scotland (1974–1982); (iii) work on the data banking of borehole records and the relevance of certain aspects of drift stratigraphy to engineering operations (1969–1971); (iv) research on the extent and chronology of the last Scottish ice sheet and associated readvances (1961–1982); (v) the reconstruction of the extent and palaeoclimatic implications of Loch Lomond Stadial glaciers (1972–1982); and (vi) investigation into aspects of landscape evolution in the Glen Roy area, including the formation of former lake shorelines, the catastrophic drainage of former ice dammed lakes and its effects, the interpretation of complex terrace sequences and the discovery of links between deglaciation, unloading, faulting, earthquakes and landslides (1978–1982). This paper also includes a complete list of Sissons' publications.  相似文献   

10.
The last British-Irish Ice Sheet (BIIS) created a landscape with many sedimentary basins that preserve archives of paleoenvironmental and paleoclimatic change during the Last Glacial-Interglacial Transition (LGIT; ~ 18-8 ka BP). The typical lithostratigraphic succession of these archives is composed of minerogenic/allogenic sediments formed during cold climatic conditions and organic-rich/authigenic sediments during warmer climates. This paper presents a multi-core lithostratigraphy compiled from the extant lake and surrounding basin at Llangorse Lake, south Wales, a basin lying within the southernmost limits of the last BIIS. This lake contains one of the longest continuous terrestrial sediment successions in the UK. Uncertainty previously existed concerning the presence and distribution of sediments at the site related to the Windermere Interstadial (~ 14.7 to ~ 12.9 ka BP) and Loch Lomond Stadial (~ 12.9 to 11.7 ka BP). A new borehole survey demonstrates that LGIT-age sediments are present at the site with nekron mud (gyttja), corresponding to the Lateglacial Interstadial, deposited in the deeper part of the lake waters and that these deposits are equivalent in age to marl deposits found at shallower depths at the margins of the basin. These deposits are associated with warmer conditions experienced during the Windermere Interstadial and Holocene, whilst minerogenic-rich sediments were deposited during the colder climatic conditions of the Dimlington Stadial and the Loch Lomond Stadial with rangefinder radiocarbon dates confirming this attribution. A model of lake level changes shows that drainage of the Dimlington Stadial glacial lake caused the largest fall, but there was also a further, smaller lake level fall at the end of the Windermere Interstadial and/or the start of the Loch Lomond Stadial, before the level rose in the early Holocene. The lithostratigraphic results presented here form the framework for further paleoenvironmental and paleoclimatic research at Llangorse Lake.  相似文献   

11.
New lithostratigraphical, pollen-stratigraphical and tephrostratigraphical data are presented for a sediment sequence at Turret Bank, a site that lies close to the confluence of the River Turret with the River Roy in Lochaber, the western Scottish Highlands. The site is also adjacent to the inner margin of a major gravel fan, the Glen Turret Fan, the age of which has been debated and has a crucial bearing on the overall sequence of events in Glen Roy, especially concerning the maximum limit of Loch Lomond Readvance (Younger Dryas) ice. Several lines of evidence point to the sediment sequence at Turret Bank having been wholly deposited during the Loch Lomond Stadial-early Holocene transition: (i) the pollen sequence is typical for this transitional period; (ii) varved deposits preserved in the sequence bear a strong resemblance to mid-Stadial varves in a regional master varve scheme for Glen Roy and vicinity (the Lochaber Master Varve Chronology); and (iii) an early Holocene tephra – the Askja-S Tephra – is preserved within the sequence. Some limitations with the new data are considered, but it is concluded that the coherent integration of lithostratigraphic, geomorphological, pollen-stratigraphical and tephrostratigraphical data point to the likelihood that Loch Lomond Readvance ice extended to the inner margin of the Glen Turret Fan, and that the fan was probably constructed by glacial meltwaters at this time.  相似文献   

12.
This paper presents the results of an investigation of early Holocene cryptotephra layers recovered from sediments in two kettle-hole basins at Inverlair (Glen Spean) and Loch Etteridge (Glen Fernisdale). Electron probe micro-analysis (EPMA) of shards from two cryptotephra layers revealed that the uppermost layer in both sequences has a composition similar to the An Druim tephra, first reported from a site in Northern Scotland. We present evidence that distinguishes the An Druim from the chemically very similar early Holocene Ashik tephra. The lowermost layer at Inverlair matches the composition of the Askja-S tephra found in the Faroe Islands, Ireland, Sweden, Germany and Switzerland. This is the first published record of the Askja-S tephra from mainland Scotland. As at other sites, the Askja-S seems to mark a short-lived climatic deterioration, most likely the Pre-Boreal Oscillation: at Inverlair it occurs just above an oscillation represented by a reduction in LOI values and in the abundance of Betula pollen, and by a peak in Juniperus pollen. The lowermost layer at Loch Etteridge has a Katla-type chemistry and extends through the upper part of the Loch Lomond (Younger Dryas/GS-1) Stadial to the Stadial/Holocene transition; it may represent a composite layer which merges the Vedde and Abernethy tephras. One of the key conclusions is that the glacial-melt deposits in the vicinity of Inverlair (kames and kame terraces) were ice-free by c. 10.83 ka (the age of the Askja-S), providing a limiting age on the disappearance of LLR ice in Glen Spean.  相似文献   

13.
The extent, basal conditions and retreat history of a Loch Lomond Stadial glacier are reconstructed based on detailed geomorphological and sedimentological assessment. We present new evidence from the vicinity of Coire Ardair that supports the former existence of a warm-based, locally-fed valley glacier, with probable cold-based ice on the surrounding plateau. This is broadly consistent with modelled creep-dominated flow in the upper catchment and sliding-dominated flow throughout much of the valley. A dense suite of moraines, primarily formed in ice-marginal environments, records a multi-phase recessional history: (1) active and oscillatory retreat; (2) a prolonged ice stillstand; (3) partial ice stagnation with occasional minor readvances; (4) increased oscillatory retreat with a substantial readvance event; and (5) rapid and uninterrupted retreat. We propose that a Coire Ardair glacier responded to sub-centennial scale climate fluctuations, possibly associated with the periodic delivery of warmer air masses to the region, rather than to a single, prominent shift in climate.  相似文献   

14.
Glen Roy is a classic geosite for ice-dammed lake shorelines, the Parallel Roads, and associated features formed during the Loch Lomond (Younger Dryas) Stade (12.9–11.7 ka). The area played a key part in the development of the glacial theory in the early 19th century and continues today to have outstanding scientific value for understanding the processes and timing of events at the end of the last glaciation. Glen Roy has also been long-appreciated as an awe-inspiring visitor attraction, and is now a flagship site for geotourism within Lochaber Geopark. Statutory geoconservation in Glen Roy, beginning in the second half of the 20th century, was founded on the exceptional scientific value of the area. The history and practice of geoconservation in Glen Roy illustrate the contested values of geoheritage and the evolving approaches adopted. Important lessons include the need for open dialogue and partnership working among the local community, land owners and managers, the statutory conservation agency (Scottish Natural Heritage), Lochaber Geopark and the scientific community.  相似文献   

15.
This paper presents a major revision of the Late Devensian Lateglacial environmental history of the Isle of Skye, Scotland, based upon a combination of geomorphological, biostratigraphical and radiocarbon evidence. The distribution of glacial and periglacial landforms, and of raised shorelines, suggests that there was only one extensive readvance of local glaciers in southern Skye following the wastage of the Late Devensian ice sheet. Pollen-stratigraphic evidence from 10 sites inside and 4 sites outside the mapped ice limits indicates that this readvance occurred during the Loch Lomond Stadial. At that time over 180km2 of the uplands of south-central Skye were covered by glacier ice, a much more extensive glaciation than previously envisaged. Palynological evidence from four Lateglacial profiles implies that degree of exposure to strong westerly winds was the principal factor determing vegetational contrasts on the island, and that regional differences in vegetational type were less pronounced than has hitherto been suggested. The glacial and palaeobotanical reconstructions reported here are more compatible with Lateglacial data from the Scottish mainland and Hebridean islands than were the previously-published accounts for the Isle of Skye.  相似文献   

16.
Pollen, sedimentological and charcoal particle analyses are presented from Devensian Late-glacial and early- to mid-Flandrian deposits from a former lake in the Vale of Pickering, Yorkshire. The combined analytical methods provide evidence for a short-lived climatic deterioration towards the end of the Late-glacial Interstadial, followed by a brief recovery prior to the Loch Lomond Stadial. This deterioration may be correlated with one of the ‘pre-Younger Dryas’ cooling periods identified not only in other pollen sequences from Britain and Europe, but from such diverse sources as Foraminifera from the Norwegian Sea and electrical conductivity measurements from the Greenland ice sheet. Loss-on-ignition and magnetic susceptibility data suggest that the Loch Lomond Stadial was characterised by an initial prolonged temperature decline, followed by a sudden more severe downturn resulting in particularly intense solifluction. Radiocarbon accelerator dating of the early Flandrian marl deposits illustrates the problem of age determination in calcareous lakes, and an estimate of the magnitude of ‘hard water error’ is obtained. The local population expansion of Alnus glutinosa is dated to 7640 ± 85 yr BP, but there is possible evidence for a Late-glacial presence of the tree, the significance of which is discussed in relation to other sites in east Yorkshire. © 1996 John Wiley & Sons, Ltd.  相似文献   

17.
Examination of two radiocarbon-dated vibrocores taken from south of St Kilda at a water depth of about 155 m, a short distance within the maximum position of the Late Devensian (Dimlington Stadial) ice sheet, suggests that the St Kilda Basin became free of glacier ice after 15250 yr BP. Sedimentation in a shallow, low energy, high arctic, muddy environment continued until after 13500 yr BP. There followed a higher energy temperate episode during which water depths were roughly about 40 m: this is correlated with the latter part of the Windermere Interstadial and with the warmer interval known in shallow Scottish seas about or a little before 11 000 yr BP. The Loch Lomond (Younger Dryas) Stadial is marked in the vibrocores by the return of muddy sediments and a cold-water fauna. Relatively shallow water conditions seem to have persisted into the earliest Flandrian, when the water depth was still roughly 60 m, corresponding to a sea-level in the area 90–100 m below present. It is suggested that pack ice was widespread in the northeast Atlantic before the Windermere Interstadial and also during the Loch Lomond Stadial, when it transported shards of Icelandic volcanic ash into the St Kilda basin. Estimates of sea-surface temperature for the last part of the Windermere Interstadial are close to those derived from the deep-sea record for the same period.  相似文献   

18.
Geomorphological mapping of southern Skye indicates evidence for a single readvance of locally-nourished glaciers. These comprised a major icefield that occupied c. 155 km2 of the main mountain area, a small icefield c. 10 km2 in extent in the Kyleakin hills and ten corrie glaciers with a total area of c. 16 km2. The absence of Lateglacial pollen sites, shorelines and periglacial features within the limits of local glaciation implies a Loch Lomond Readvance age for this glacial event. The area-weighted mean equilibrium line altitude (ELA) of the reconstructed Loch Lomond Readvance glaciers (319 m) conforms with a regional eastwards rise in ELAs that indicates dominant westerly airstreams during the Loch Lomond Stadial. An easterly decline in ELAs across the former icefields is interpreted in terms of easterly transfer of snow across ice-sheds by westerly winds, though the altitudes of corrie glacier ELAs suggest that the dominant snow-bearing winds were southerlies. Calculations based on the area-weighted mean ELA for the major icefield (308 m) indicate a stadial mean July sea-level temperature of c. 6 °C. The anomalously low gradients of certain former icefield outlet glaciers are attributed to deformation of subglacial sediment, an effect that may vitiate the assumption of linear ablation/accumulation gradients in the calculation of former ELAs for reconstructed glaciers.  相似文献   

19.
Current understanding of the Younger Dryas (Loch Lomond Stadial) ice cap in Scotland is dominated by reconstructions derived solely from field evidence. We use an area in the western Scottish Highlands to evaluate three examples of this approach by comparing the proposed glacier reconstructions with new empirical data and the predictions of a high-resolution numerical model. Particular emphasis is placed on accurately determining the maximum surface altitude attained by the ice cap, dominant palaeo-iceflow directions and the style of ice-cap recession. By combining new geomorphological and sedimentological data with model predictions, we present a revised interpretation of the build-up and decay of Loch Lomond Stadial ice in the study area - one that suggests a maximum ice-surface altitude of c. 900 m a.s.l., east and southeastward iceflow and active recession of a dynamic margin. Good agreement between the new field-based interpretation and the predictions of the numerical model validates the latter and by implication extends confidence in its veracity beyond the study area.  相似文献   

20.
Morphological mapping and stratigraphical investigations have identified surface and buried relict marine features in the inner Moray Firth area. The features consist of a buried gravel layer formed during the Loch Lomond Stadial, a buried beach of early Flandrian age, and surface beaches and estuarine flats of mid-late Flandrian age. Analysis of the altitudes of morphological features has identified two buried and five (possibly six) surface glacio-isostatically tilted raised shorelines. The steepest shoreline is associated with the buried gravel layer and slopes down towards N20°E at a gradient of 0.20m/km. Younger shorelines have lower gradients between 0.16–0.03m/km. The shoreline sequence combined with published data defines relative sea-level movements in the area during the last 11000 years. The inner Moray Firth shorelines are correlated with similar features in other areas of Scotland which include the Main Lateglacial, Main Buried and Main Postglacial Shorelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号