首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed mineral microinclusions in fibrous diamonds from the Wawa metaconglomerate (Superior craton) and Diavik kimberlites (Slave craton) and compared them with published compositions of large mineral inclusions in non-fibrous diamonds from these localities. The comparison, together with similar datasets available for Ekati and Koffiefontein kimberlites, suggest a general pattern of metasomatic alteration imposed on the ambient mantle by formation of fibrous diamond. Calcium and Fe enrichment of peridotitic garnet and pyroxenes and Fe enrichment of olivine associated with fibrous diamond-forming fluids contributes to refertilization of the cratonic mantle. Saline—carbonatitic—silicic fluid trapped by fibrous diamonds may represent one of the elusive agents of mantle refertilization. Calcium enrichment of peridotitic garnet and pyroxenes is expected in local mantle segments during fibrous diamond production, as Ca in the carbonatitic fluids is deposited into the surrounding mantle when oxidized carbon is reduced to diamond. Harzburgitic garnet evolves towards Ca-rich compositions even when it interacts with Ca-poor saline fluids. An unusual trend of Mg enrichment to Fo95–98 is observed in some olivine inclusions in Wawa fibrous diamonds. The trend may result from the carbonatitic composition of the fluid that promotes crystallization of magnesian olivine and preferentially oxidizes the fayalite component. We propose a generic model of fibrous and non-fibrous diamond formation from carbonatitic fluids that explains enrichment of the mantle in mafic magmaphile and incompatible elements and accounts for locally metasomatized compositions of diamond inclusions.  相似文献   

2.
We discuss the chemistry of exceptionally rare phlogopite inclusions coexisting with ultramafic (peridotitic) and eclogitic minerals in kimberlite-hosted diamonds of Yakutia, Arkhangelsk, and Venezuela provinces. Phlogopite inclusions in diamonds are octahedral negative crystals following the diamond faceting in all 34 samples (including polymineralic inclusions). On this basis phlogopite inclusions have been interpreted as syngenetic and in equilibrium with the associated minerals. In ultramafic diamonds phlogopites coexist with subcalcic high-Cr2O3 pyrope and/or chromite, olivine and enstatite (dunite/harzburgite (H) paragenesis) or with clinopyroxene, enstatite, and/or olivine and pyrope (lherzolite (L) paragenesis). Ultramafic phlogopites have high Mg# [100?Mg/(Mg+Fe)] from 92.4 to 95.2 and Cr2O3 higher than TiO2 in H-phlogopites (1.5–2.5 wt.% versus 0.1–0.4 wt.%, respectively) but lower in L-phlogopites (0.15–0.5 wt.% versus 1.3–3.5 wt.%, respectively). Eclogitic (E) phlogopites show Mg# from 47.4 to 85.3 inclusive, and very broad ranges of TiO2 up to 12 wt.%. The primary syngenetic origin of phlogopite is indicated, besides other factors, by its compositional consistency with the associated minerals. The analyzed phlogopites are depleted in BaO (0.10–0.79 wt.%), and their F and Cl contents are highly variable reaching 1.29 and 0.49 wt.%, respectively. The latter is in line with high Cl enrichment in some unaltered kimberlites and in nanometric fluid inclusions from diamonds. The presence of syngenetic phlogopite in kimberlite-hosted diamonds provides important evidence that volatiles participated in diamond formation and that at least a part of diamonds may have been related to early stages of kimberlites formation.  相似文献   

3.
Three major suites of silicate inclusions in sublithospheric diamonds show evidence of formation at depths > 250 km, and for each suite there is evidence of their formation from subducted material. Two of these are the well known basic (majoritic garnet) and ultrabasic (MgSi-perovskite + ferropericlase) suites. The third, the recently recognised Ca-rich suite, is characterised by carbonate, Ca-Si-Ti minerals and some aluminous material. Carbon isotope ratios in the host diamonds and geochemical-petrological features of the inclusions themselves provide evidence for their derivation from subducted lithosphere materials. The diamonds hosting the basic and ultrabasic suites are suggested to form in fluids/melts resulting from the release of water caused by dehydration reactions affecting both the crustal and mantle portions of a subducting slab of ocean lithosphere. Conversely, the diamonds containing the Ca-rich suite are linked with the formation of carbonatitic melts. In the Juina kimberlite province of Brazil, all three suites have been found in close proximity. A model is presented whereby the formation of the suites occurs progressively during the subduction and stagnation of a single lithospheric slab, with all three suites being transported to the lithosphere by a plume with which the carbonatitic melts of the Ca-rich suite are associated. Nd-Sr isotopic data are presented for the Juina majoritic-garnet inclusions, which supports their formation from oceanic crust of Mesozoic age. In conjunction with published age data for a Ca-Si-Ti inclusion, the Juina (Brazil) sublithospheric inclusions document a series of events involving diamond formation during and following the emplacement of a subducted slab between ca 190 and 90 Ma beneath west Gondwanaland. This slab and related subducted slabs dating from the Palaeozoic at the Gondwanan margin may be the source of the widespread DUPAL geochemical anomaly in the South Atlantic and Indian Oceans. The kimberlites bringing the diamonds to the Earth's surface may have arisen from a superplume, developed from a graveyard of former Gondwanan stagnant slabs, at the Core-Mantle-Boundary.  相似文献   

4.
The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol’skaya–Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol’shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.  相似文献   

5.
通过对115粒山东郯城砂矿金刚石样品进行矿物学和光谱学特征研究,结果显示郯城金刚石的粒径集中在1.0~4.0mm之间,晶体形态以菱形十二面体为主,其次八面体与菱形十二面体聚形,八面体较少;晶面形貌除倒三角凹坑、塑性变形滑移线、熔蚀沟、生长丘、生长阶梯、叠瓦状蚀象、滴状丘、晕线等原生形貌发育外,小部分发育有次生形貌-绿色色斑,且大多数金刚石的边棱清晰,磨圆程度不高。研究首次测得了郯城金刚石的拉曼特征峰的半高宽数据和金刚石包裹体拉曼谱图,显示郯城砂矿金刚石结晶程度差异较大,暗示其形成的金刚石地质生长条件和环境的复杂性;金刚石包裹体有橄榄石、黄铜矿、针铁矿、石墨矿物,其中橄榄石包裹体占比较高,表明郯城金刚石包裹体类型以橄榄岩型为主,测试结果与华北东部古老克拉通之下的岩石圈地幔大部分由橄榄岩组成的结论一致。对比郯城金刚石与蒙阴金刚石特征的异同,初步探讨了金刚石砂矿的物质来源,为揭示郯城砂矿金刚石的形成及演化提供了金刚石及其包裹体的新的证据。  相似文献   

6.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


7.
Sulfide inclusions in diamonds, the most common of all inclusions, contain critical evidence about the timing and physical/chemical conditions prevailing during diamond formation. Typically, sulfide inclusions are encapsulated as a monosulfide solid solution (Mss) in the Fe-Ni-S system, with a minor amount of Cu. This Mss and the enclosing diamond have sufficiently different thermal expansion properties, so that, after encapsulation, the Mss creates a series of cracks in the diamond radiating from the sulfide. On cooling, this increase in volume permits the Mss to undergo exsolution to an assemblage of pyrrhotite + pentlandite + chalcopyrite + pyrite. The kinetics of this exsolution is so rapid that practically no Mss remains in nature. Instead, in recovered diamonds, all sulfides that originally were Mss now consist of this fine-grained assemblage. Chalcopyrite prefers to form around the edges of the inclusions and also migrates into the minute cracks in the diamonds. It is the bulk composition of the Mss as encapsulated that is important for interpretation of diamond petrogenesis (P- versus E-type diamonds) and to the commonly used Re-Os dating technique. However, this bulk composition is definitely not attainable with polished sections cut through the inclusions. The assumption that the kernel of the sulfide inclusion for Re-Os age dating represents the entire original Mss may also be incorrect, depending what has been lost, mostly chalcopyrite, which has migrated into the surrounding cracks within the diamond host.  相似文献   

8.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

9.
Olivine, orthopyroxene and garnet grains belonging to the peridotitic suite of mineral inclusions in natural diamonds typically show compositions poorer in Ca and Al and richer in Mg and Cr than the same minerals in peridotite nodules in kimberlite. Other features suggest the crystallisation of diamonds from magmas of kimberlitic affinities, and it is suggested that the genesis of peridotitic suite diamonds is linked with that of a CO2-bearing magma. It is shown that the generation of kimberlitic magma from common garnet-peridotite (with 5 wt.% clinopyroxene) in the presence of CO2 may rapidly remove by melting all Ca-rich solid phases (clinopyroxene and/or carbonate). Further melting may form liquids in equilibrium with olivine, orthopyroxene, and garnet with the distinctive compositions of the diamond inclusions. The amount of melting and CO2 necessary for the loss of clinopyroxene (and/or carbonate) are estimated at approximately 5.0 wt.% and 0.5 wt.% respectively.  相似文献   

10.
This paper discusses mineralogy of Ca-rich inclusions in ultra-deep (sublithospheric) diamonds. It was shown that most of the Ca-rich majoritic garnets are of metabasic (eclogitic) affinity. The observed variation in major and trace element composition is consistent with variations in the composition of the protolith and the degree of enrichment or depletion during interaction with melts. Major and trace element compositions of the inclusions of Ca minerals in ultra-deep diamonds indicate that they crystallized from Ca-carbonatite melts that were derived from partial melting of eclogite bodies in deeply subducted oceanic crust in the transition zone or even the lower mantle. The occurrence of merwinite or CAS inclusions in ultra-deep diamonds can serve as mineralogical indicators of the interaction of metaperidotitic and metabasic mantle lithologies with alkaline carbonatite melts. The discovery of the inclusions of carbonates in association with ultra-deep Ca minerals can not only provide additional support for their role in the diamond formation process but also help to define additional mantle reservoirs involved in global carbon cycle.  相似文献   

11.
In an attempt to better define the depths of formation of eclogitic-paragenesis diamonds from the Argyle lamproite pipe, we have employed a Laser Raman microprobe to determine the Raman peak shift of a garnet inclusion (extracted from diamond) with pressure in a diamond-anvil pressure cell. On the basis of these data, we further found that the in situ garnet inclusions record near-atmospheric pressures within the limits of experimental uncertainty. Data on the compressibility and thermal expansivity of both diamond and garnet were used to define a P-T curve for the entrapment of garnet in diamond. A window within the range 47 kbar at 1100° C (150 km) to 93 kbar at 1500° C (280 km) for the formation of syngenetic garnet inclusions in diamond is defined by the intersection of the continental geotherm with the diamond-graphite boundary and the entrapment curve determined in the present study. This P-T window is consistent with the constraints imposed by other petrological studies of co-existing inclusions. Most of eclogitic-paragenesis diamonds from Argyle are estimated to have formed at a depth less than 250 km, if temperature estimates from petrological study are used.  相似文献   

12.
Clinopyroxene inclusions in diamond contain elevated potassium contents and can potentially be dated by 40Ar/39Ar techniques. Previous 40Ar/39Ar studies of clinopyroxene inclusions contained in cleaved diamonds have suggested that argon, produced from the decay of potassium prior to eruption of the host kimberlite magma, diffuses to the diamond/clinopyroxene interface under mantle conditions. After intrusion and cooling below the closure temperature for argon diffusion, radiogenic argon is retained by the clinopyroxene inclusions. This behaviour complicates efforts to date diamond crystallisation events; however, extraction of inclusions from their host diamond should induce loss of all interface argon, thus raising the possibility of determining kimberlite emplacement ages. This possibility has important implications for constraining the source localities of detrital diamond deposits worldwide, with concomitant benefits to diamond exploration. To investigate this premise, 40Ar/39Ar laser probe results are presented for single clinopyroxene inclusions extracted from a total of fifteen gem-quality diamonds from the Mbuji-Mayi kimberlite in the Democratic Republic of Congo, and the Jwaneng and Orapa kimberlites in Botswana.Initial fusion analyses of clinopyroxene inclusions from Mbuji-Mayi diamonds yielded ages older than the time of host kimberlite intrusion, indicating partial retention of extraneous argon by the clinopyroxene inclusions themselves. Step-heating analyses of clinopyroxene inclusions from Orapa and Jwaneng diamonds produced older apparent ages from lower temperature steps and the ‘rim’ fragment of one Orapa inclusion. High temperature (fusion) analyses yielded younger apparent ages, commonly approaching the times of host kimberlite eruption. Total-gas integrated 40Ar/39Ar ages are mostly intermediate between the times of inferred diamond crystallisation and kimberlite eruption. Ca/K ratios for each sample are uniform across step-heating increments, indicating that age variations are not due to compositional, mineralogical or alteration effects. The favoured explanation for these results is partial retention of extraneous argon in primary and/or secondary fluid inclusions. This component is then preferentially outgassed in lower temperature heating steps, yielding older apparent ages.The partial retention of extraneous argon by clinopyroxene inclusions clearly restricts efforts to determine source ages for detrital diamond deposits. Results from individual samples must necessarily be interpreted as maximum source emplacement ages. Nonetheless, step-heating analyses of several clinopyroxene inclusions from a detrital diamond deposit may provide reasonable constraints on the ages of source kimberlites/lamproites; however minor age populations as well as those closely spaced in time, may be difficult to resolve.It is argued that the majority of older 40Ar/39Ar ages can be explained in terms of the partial retention of inherited argon, produced between the times of diamond crystallisation and kimberlite eruption. Although the presence of excess argon in some clinopyroxene inclusions cannot be excluded, available evidence (e.g. no excess argon in Premier eclogitic inclusions or potassium-poor inclusions) suggests that this is not a factor for most samples. Three possible mechanistic models are forwarded to account for the uptake of inherited (± excess) argon in fluid inclusions. The first envisages negligible interface porosity and diffusion of extraneous argon exclusively to primary fluid inclusions, which subsequently partially decrepitated during eruption, causing accumulation of argon at the diamond/clinopyroxene interface. The second model permits diffusive loss of extraneous argon to both the interface region and primary fluid inclusions. The third involves diffusion of extraneous argon to the interface region, with later entrapment of some interface argon in secondary fluid inclusions, produced by fracture/annealing processes active during eruption. The first model can account for all 40Ar/39Ar results, whereas the latter two mechanisms require the presence of an excess argon component to explain older integrated ages (up to 2.9 Ga) from two Jwaneng samples. Excess argon contamination would compromise efforts to determine diamond genesis ages using the 40Ar/39Ar dating technique. However, if the first model is valid, then the older 40Ar/39Ar integrated ages support previous Re-Os age results for the crystallisation of Jwaneng diamonds.  相似文献   

13.
Crystal habit and morphological peculiarities of synthetic diamonds at various temperatures and pressures have been studied. A diagram has been proposed based on experimental data for different crystal morphologies with respect to differentT-P conditions. A preliminary discussion has been given to the growth field of perfect crystals and a principle is presented for the optimumT-P conditions for synthesis of perfect diamonds.  相似文献   

14.
Tiny inclusions found in diamonds may hold the clue to the origin of the Earth's continental crust. This is the new idea proposed by a group of Earth scientists from Australia and Russia studying a diamond pipe in Siberia.  相似文献   

15.
Individual, sub-calcic, chrome-pyrope crystals from Finsch and Kimberley diamonds, Finsch and Bultfontein kimberlite heavy mineral concentrate, and from diamondiferous harzburgite-dunite xenoliths from the Udachnaya kimberlite pipe were analyzed for rare earth elements (REE), Sc, Ti, and Zr with the ion microprobe. The abundances and abundance ratios of these trace elements including LREE enrichment and low Ti, together with high and variable Cr contents, are inconsistent with a simple equilibrium relationship between peridotite-suite garnet and silicate and carbonate liquids. It is suggested that the trace element abundance patterns represent a signature of ancient mantle metasomatism which preceded the formation of peridotite-suite garnet and diamond.  相似文献   

16.
17.
 Multianvil experiments were carried out at 10–15 GPa and 1600–1700 °C to match the compositions of majoritic garnet inclusions from diamonds, and to determine the compositions of other phases potentially coexisting with these inclusions in the source. Most experiments produced coexisting majoritic garnet, diopsidic clinopyroxene, one or more (Mg,Fe)2SiO4 polymorphs, and quenched carbonatic melt. The experimental garnets had relatively high Ca and Fe contents similar to the observed Ca and Fe contents of the inclusions. The resulting Si contents confirmed that the depth of origin of the inclusion with the highest Si content did not exceed 410 km, thus none of the majoritic garnet inclusions found so far originated in the transition zone (410–660 km). The evidence from inclusions and experiments is consistent with the presence of an eclogite layer occurring globally between 200 and 410 km. Compositional variations observed among more than 100 majoritic garnet inclusions with their Si content, which is a measure of pressure and depth, are consistent with the origin of the eclogite layer by crystal fractionation in a magma ocean. The compositions of olivine coexisting with majoritic garnet in the experimental products had the average Fe/(Fe + Mg) ratios between 0.16 and 0.28. Inclusions with such high Fe contents have not been found; the Fe/(Fe + Mg) ratio of the olivine inclusions in diamonds usually varies between 0.05 and 0.09. Hence, the mantle between 200 and 410 km may not contain olivine. In the absence of olivine, the discontinuity at 410 km is most likely a chemical boundary between the 200-km-thick eclogite layer and a more mafic transition zone. Received: 15 March 2001 / Accepted: 14 September 2001  相似文献   

18.
Three new mineral associations have been discovered within diamonds from the Juina district of Brazil. These include a previously unrecorded Na-Al-(Mg, Fe)SiO3 phase associated with ferropericlase and the tetragonal almandine pyrope phase, TAPP. Also reported are an association of corundum with aluminous-pyroxene and an olivine composition phase associated with ferropericlase. The minerals in each association often occurred within the same diamonds in addition to being recovered from individual diamonds in different combinations. High-pressure experimental data indicate that these associations formed at different depths within a region ca. 60 km on either side of the upper-mantle/lower-mantle boundary. Mineral compositions show that for the regions sampled, the deep transition zone and lower mantle are chemically distinct and inhomogeneous. Importantly, in the shallow lower mantle, Al is not solely accommodated within perovskite-structured (Mg, Fe)SiO3 as some recent experimental studies have suggested.  相似文献   

19.
To elucidate the conditions of formation of epigenetic graphite inclusions in natural diamond, we carried out experiments on high-temperature treatment of natural and synthetic diamond crystals containing microinclusions. The crystal annealing was performed in the CO–CO2 atmosphere at 700–1100 °C and ambient pressure for 15 min to 4 h. The starting and annealed diamond crystals were examined by optical microscopy and Raman spectroscopy. It has been established that the microinclusions begin to change at 900 °C. A temperature increase to 1000 °C induces microcracks around the microinclusions and strong stress in the diamond matrix. The microinclusions turn black and opaque as a result of the formation of amorphous carbon at the diamond–inclusion interface. At 1100 °C, ordered graphite in the form of hexagonal and rounded plates is produced in the microcracks. A hypothesis is put forward that graphitization in natural diamond proceeds by the catalytic mechanism, whereas in synthetic diamond it is the result of pyrolysis of microinclusion hydrocarbons. The obtained data on the genesis of graphite microinclusions in diamond are used to evaluate the temperature of kimberlitic melt at the final stage of formation of diamond deposits.  相似文献   

20.
Trace element compositions of submicroscopic inclusions in both the core and the coat of five coated diamonds from the Democratic Republic of Congo (DRC, formerly Zaire) have been analyzed by Laser Ablation Inductively Coupled Mass Plasma Spectrometry (LA-ICP-MS). Both the diamond core and coat inclusions show a general 2-4-fold enrichment in incompatible elements relative to major elements. This level of enrichment is unlikely to be explained by the entrapment of silicate mantle minerals (olivine, garnet, clinopyroxene, phlogopite) alone and thus submicroscopic fluid or glass inclusions are inferred in both the diamond coat and in the gem quality diamond core. The diamond core fluids have elevated High Field Strength Element (Ti, Ta, Zr, Nb) concentrations and are enriched in U relative to inclusions in the diamond coats and relative to chondrite. The core fluids are also moderately enriched in LILE (Ba, Sr, K). Therefore, we suggest that the diamond cores contain inclusions of silicate melt. However, the Ni content and Ni/Fe ratio of the trapped fluid are very high for a silicate melt in equilibrium with mantle minerals; high Ni and Co concentrations in the diamond cores are attributed to the presence of a sulfide phase coexisting with silicate melt in the diamond core inclusions. Inclusions in the diamond coat are enriched in LILE (U, Ba, Sr, K) and La over the diamond core fluids and to chondrite. The coats have incompatible element ratios similar to natural carbonatite (coat fluid: Na/Ba ≈0.66, La/Ta≈130). The coat fluid is also moderately enriched in HFSE (Ta, Nb, Zr) when normalized to chondritic Al. LILE and La enrichment is related to the presence of a carbonatitic fluid in the diamond coat inclusions, which is mixed with a HFSE-rich hydrous silicate fluid similar to that in the core. The composition of the coat fluid is consistent with a genetic link to group 1 kimberlite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号