首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用泰山CD雷达和济南SA雷达探测资料,对2016年6月13—14日和9月11日4个长寿命强冰雹风暴参数进行了对比分析。结果表明,4个强冰雹风暴成熟阶段济南SA雷达探测到的DBZM值都在60 d BZ以上,C-VIL值基本在50 kg·m~(-2)以上,TOP值基本在9 km以上,0613平阴风暴和0614章丘风暴不仅持续时间相差不多,而且DBZM、C-VIL、TOP值基本相近,DBZM基本在64d BZ以上,最大达到70 d BZ,C-VIL基本在60 kg·m~(-2)以上,最大在80 kg·m~(-2)左右,TOP值基本在10.5 km以上;SA雷达和CD雷达监测到的风暴参数有明显差异,SA雷达观测到的强风暴DBZM、C-VIL和TOP值明显大于CD雷达观测到的值,特别是DBZM和C-VIL在风暴强盛阶段差异更加明显,风暴强盛阶段,SA和CD雷达观测到的0613阳谷风暴、0613平阴风暴、0614章丘风暴和0911高青风暴的DBZM平均差值分别为10 d BZ、10 d BZ、9 d BZ和7 d BZ,C-VIL平均差值分别为30kg·m~(-2)、28 kg·m~(-2)、29 kg·m~(-2)和28 kg·m~(-2)。造成强风暴参数差异性的主要因素是大的粒子或者强降雨对CD雷达电磁波强烈衰减,同时泰山CD雷达的地理环境和观测模式也是原因之一。  相似文献   

2.
利用地面观测资料和多普勒天气雷达探测资料,对2015-2016年山东省11站次,小时降水量超过100mm的强降水单体的风暴参数特征和形态结构演变特征及10分钟雨量变化情况进行了分析。10分钟雨量变化情况表明,15~20mm降水量出现次数最多,约85%的降水量≥10mm,65%的降水量≥15mm;最大雨量多数在25mm以上,平均值是27.6mm;最大降水量所对应的站点上空最大反射率因子平均值为52.5d BZ,所对应Z-R关系与Z=250R1.28非常接近。强降水单体风暴参数和形态结构演变特征表明,强降水阶段C-VIL值多数在17~37kg·m-2之间,平均值为28kg·m-2,明显小于冰雹预警C-VIL阈值;DBZM值多数在52~58d BZ之间,平均值为55d BZ;HT值多数在2.2~5.8km之间,平均值为4.2km;TOP值多数在7.5~12km之间,平均值为9.9km;ET值多数在11~15km之间,平均值为13.1km;盛夏季节,强降水单体具有低质心特征,降水强度较大;强降水单体演变具有"列车效应"或移动缓慢特征。  相似文献   

3.
利用济南多普勒天气雷达资料,结合探空和天气实况资料,对2次历时超过4 h的孤立非超级单体风暴强度结构、流场结构和环境物理量及其差异性进行了分析。结果表明,0611和0915风暴均产生于东北冷涡底部西北气流和低层切变线环境形势下,上干冷下暖湿,0~6 km具有强垂直风切变,600 h Pa为起点的下沉对流有效位能(DCAPE)具有较大值。旺盛阶段,0915风暴的最大反射率因子(DBZM)、基于单体的垂直累积液态含水量(C-VIL)和强中心高度(HT)参数平均值明显大于0611风暴,差值分别是6. 7 dBZ、11 kg·m-2和2. 4 km。0915风暴成熟阶段的前期表现为明显中层径向辐合(MARC)特征,中期风暴中层表现为强气旋性旋转气流结构,后期又演变为MARC特征,同时辐合强度更加显著。0611风暴旺盛阶段中层具有双涡结构,但前期气旋性旋转强度明显大于反气旋性旋转强度,后期情况相反,反气旋性旋转强度明显大于气旋性旋转强度。两次过程中环境物理量差别明显的是对流有效位能(CAPE)和低层比湿,0915风暴CAPE和低层比湿明显大于0611风暴过程。在相似的形势背景下,低层湿度大,具有大的CAPE值,风暴内部上升气流的最大上升速度较大,利于强反射率核的悬垂和维持。  相似文献   

4.
利用济南多普勒天气雷达产品和华北区域雷达拼图等资料,普查了2012—2016年影响山东的线状中尺度对流系统(linear mesoscale convective system,LMCS),分析了LMCS与多单体风暴的合并方式以及合并后的演变趋势等特征,得到如下几条结论:1) LMCS(A)与多单体风暴(B)有A追B,A扩展,A、B相向和B追A四种合并方式; 2) LMCS与多单体风暴合并的临界距离为30 km;3) LMCS与多单体风暴合并后,强度增强或维持,尺度增大,生命史延长,长轴将可能转向; 4) LMCS与多单体风暴合并时,其本身合并部分将减弱,多单体风暴合并进入LMCS,成为LMCS的一部分;5)合并是雷暴的传播运动造成的; 6) 63. 3%的合并案例会产生雷暴大风、冰雹或强降水灾害,雷暴大风灾害出现的概率最大。  相似文献   

5.
一次多单体风暴的多普勒雷达特征分析   总被引:1,自引:0,他引:1  
利用烟台CINRAD/SA雷达产品资料,分析2004年9月1日山东半岛中南部地区的一次冰雹天气过程及其内部风场结构,结果表明:有组织的多单体风暴是引发这次冰雹天气的主要影响系统,对流单体自-20℃层高度发展并逐渐向低层扩展,新生对流单体生成于单体移动方向的右侧。VIL产品(4km×4km)对冰雹的落区有较好的指导作用。对流层上层的冷空气和-20℃层上下的垂直风切变对对流的发展有触发和促进作用。对流层中层的高螺旋度值区,延长了风暴生命史,指示了主要对流活动的高度。  相似文献   

6.
利用鲁中地区2001—2016年伴随瞬时风力不低于8级的所有强对流天气个例共106次进行分析,总结其气候特征,并通过箱须图的形式研究了分类强对流天气相关环境参数的分布特征和预报阈值。结果表明:2001—2016年强对流天气分布呈山区多、平原少、中部多、北部和西南部少的特点; 6月和6月中旬是主要月份和旬份;地面辐合线是最主要触发机制类型;雷暴大风型、冰雹雷暴大风型和强降水混合型对应的地面和850 hPa的平均温度露点差,0~1 km和0~3 km垂直风切变,SWEAT指数、LI指数、K指数、风暴相对螺旋度、高度指数等环境参数各有不同的最低阈值;鲁中地区易发生强对流天气的0℃层高度为4. 1 km左右;对于伴随冰雹的强对流天气,其融化层高度比0℃层高度低0. 6 km左右。根据以上环境参数的分布特征、高低空垂直风切变的强弱变化可对3类强对流天气进行一定程度的区分。  相似文献   

7.
利用多普勒天气雷达资料以及FY2D逐小时亮温(TBB)资料对2015年4月28日发生在苏皖地区的一次冰雹天气过程进行分析研究,结果表明:(1)利用多普勒天气雷达资料分析可知,此次冰雹天气是由超级单体风暴造成的,这次风暴不但发展非常强烈并且持续时间较长,13:00左右对流风暴产生,16:45左右对流风暴发展成为超级单体,从22:02开始,超级单体逐渐减弱并向东南沿海方向移去。另外,0℃层高度为3.7 km左右,-20℃层高度为7.0 km左右,反射率因子强度达到50 dBZ的区域伸展到了-20℃高度以上,表明有产生大冰雹的可能性。(2)利用FY2D逐小时亮温(TBB)资料分析可得,此次中尺度对流风暴云团产生于13:00,并于24:00减弱入海,而后消失。冷云中心TBB最小值达到-60℃,与实际降雹区域进行比较可得,降雹发生在亮温梯度较大的区域。  相似文献   

8.
利用济南、滨州和潍坊多普勒天气雷达及常规观测资料,对2016年6月14日下午到晚间发生在鲁中地区的超级单体回波演变和结构特征进行了分析。结果表明,该超级单体风暴产生在较大的对流有效位能和有利的风垂直切变条件下。其演变分为经典超级单体和强降水超级单体两个阶段。经典超级单体由普通单体迅速演变而来,其特征十分明显。强降水超级单体由经典超级单体风暴与其后侧下沉气流触发的普通单体风暴合并形成。合并过程造成风暴旋转强度增强,并产生类似龙卷的小尺度涡旋,导致了地面大风和大冰雹的出现。  相似文献   

9.
利用常规气象观测资料、章丘站探空资料及滨州、济南新一代SA天气雷达探测资料,对2016年6月14日发生在山东中部地区一次强降雹天气过程进行分析。结果表明:雷暴发生前大气不稳定能量的明显增加,较强垂直风切变是有利于强对流天气发生的环境条件;长寿命超级单体沿两山之间的谷地运动,地形对雹体发生、发展起到了抬升和维持作用,对单体的移动起到了导向作用;雷暴发生前的垂直累积液态水含量(VIL)跃增对冰雹粒子的形成和增长十分有利;超长的三体散射(TBSS)、深厚而持久的中气旋、高悬的强反射率中心、有界弱回波区以及风暴顶强烈辐散都是大冰雹发生的显著特征。  相似文献   

10.
为研究暴雨过程中逆风区特征及应用判据,统计分析2010—2017年山东临沂地区暴雨过程中的多普勒雷达观测资料,结果表明:暴雨过程中,风暴内的垂直环流是造成逆风区发生发展的直接原因;逆风区表现为β中尺度和γ中尺度,其形态在不同天气类型下有明显差异;逆风区持续阶段降水强度增大,持续时间与过程累积雨量呈正相关;当雷达最低仰角识别到逆风区,其厚度≥4. 0 km、强度≥15 m·s~(-1)、径向速度绝对值最大值≥5 m·s-1且持续30 min以上时,风暴常明显发展,相关特征可用于预报风暴和暴雨的发展。  相似文献   

11.
基于济南S波段双偏振多普勒天气雷达探测数据,结合探空和地面实况资料,对2019年同一区域两次强降水风暴双偏振参量特征进行分析。结果表明:1)两次对流性强降水发生在弱垂直风切变环境下,具有较强的对流有效位能,低层湿度较大,0℃层高度较高,利于短时强降水的产生。2)两次强降水风暴都具有低质心热带降水特征,45 dBZ以上的强回波区主要位于环境0℃层高度之下。3)风暴低层强回波区都对应大的差分反射率因子Z_(DR)和比差分相位K_(DP),Z_(DR)≥0.5 dB,K_(DP)≥0.5°·km~(-1),相关系数CC≥0.95;反射率因子在50~54 dBZ之间,对应的K_(DP)1.0°·km~(-1),CC≥0.97,Z_(DR)适中,是两次强降水风暴导致高强度降水的主要双偏振参量特征。4)两次强降水风暴Z_(DR)柱和K_(DP)柱高度存在明显差异,7月27日强降水风暴前侧出现Z_(DR)柱和K_(DP)柱,高度接近-10℃层高度,8月10日强降水风暴Z_(DR)柱和K_(DP)柱略高于0℃层高度,Z_(DR)柱高度对雷暴强度具有指示作用。  相似文献   

12.
我国第二代静止气象卫星FY-4A观测能力较之前有明显提升,在天气特别是对流性天气监测和预测中具有较强的应用潜力。利用FY-4A气象卫星多通道扫描辐射成像仪(Advanced Geosynchronous Radiation Imager,AGRI)和闪电成像仪(Lightning Mapping Imager,LMI)数据开展研究,分析了反演产品在强雷暴天气中的应用。研究表明,扫描辐射成像仪多通道组合白天对流风暴红-绿-蓝(red-green-blue,RGB)合成产品可以突出具有强上升气流的对流性雷暴云,较单通道及多通道可见光合成产品具有监测优势;闪电成像仪产品较地面闪电探测闪电产品能够探测到更多的闪电,对新生对流和较弱对流产生的闪电监测具有优势;在华北和黄淮一次强雷暴天气过程中,白天对流风暴RGB合成产品能够监测云系发展的过程,卫星监测闪电活动频数和冰雹活动一致性较好。  相似文献   

13.
2018年6月13日,多条线状风暴和阵风锋造成山东多地出现致灾大风,基于常规、加密气象观测资料、卫星云图和多普勒天气雷达资料,对此次大风成因进行了分析。结果表明:(1)冷涡后部横槽转竖引导冷空气叠加在低层暖脊之上,850 hPa与500 hPa 温差高达34.7 ℃,同时925~600 hPa 的干层与地面至925 hPa的近饱和层相叠置,上下层大气之间温、湿差异显著,形成强热力不稳定,持续并增强的低层逆温层使不稳定能量得到积累,显著干层和低层强温度垂直递减率为夹卷和蒸发冷却过程提供了有利条件。(2)线状风暴各生命期强阵风是由内嵌其中的普通单体或超级单体下击暴流所引发。单体间下沉气流合并使地面大风的影响范围和强度有所增大。强阵风均伴随较强降雨和降雹,雨滴和冰雹的拖曳是产生下击暴流的重要原因,极大风速与5 min降水量具有正向相关性,青岛34.8 m ·s-1的极端大风出现时5 min降水量达19 mm。(3)山东东南部的初生对流在地面辐合线、海风锋、对流云街上被接连触发,遇阵风锋后生命史延长,得以并入到主风暴,使风暴发展壮大,而风暴中的下沉气流又驱动多股阵风锋加速向南推进,增强地面风速,阵风锋与风暴主体之间存在相互促进机制。在对流潜势较高的条件下,需关注边界层辐合线对对流的触发作用。  相似文献   

14.
2020年5月山东共出现13次强对流天气过程,其中8次出现冰雹,共15市(93.8%)81站(65.9%)出现降雹,单站最大降雹次数为4次。10次出现10级以上雷暴大风,5次出现短时强降水,强对流次数之多、范围之广、强度之大、灾害之重为近10年少见。其中,“5 ·17”强对流天气过程最为剧烈,其冰雹范围之广非常罕见,最大冰雹直径为4.5 cm,最大风速达36.6 m ·s-1(12级),最大雨强达56.9 mm ·h-1。利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析数据集(ECMWF Reanalysis v5,ERA5)和加密自动气象观测站、多普勒天气雷达、闪电定位等资料,对2020年5月山东强对流天气特点及强对流多发的原因进行分析,并以“5 ·17”强对流天气过程为例,对雷达回波特征和风暴内的垂直运动进行剖析。结果表明:(1)副热带高压强度偏强,一方面有利于其外围的西南暖湿气流到达山东,另一方面阻挡西风带系统,导致前倾槽强度偏强,长时间维持在山东上空;500 hPa异常偏强的暖高压脊前西北气流携带的冷空气叠加在850 hPa偏强的暖温度脊上空,造成山东上空长时间为位势不稳定大气层结。(2)在上述有利的天气背景下,山东上空水汽充沛,对流有效位能偏大,冀鲁豫3省交界处气旋式辐合偏强,鲁中地区稳定存在一条辐合线,容易触发产生强对流天气,造成山东5月强对流天气频发。(3)对流风暴高度组织化、区域性的超级单体群以及一条长度超过500 km的强飑线是造成“5 ·17”强对流的直接原因,对流风暴内部的上升速度高达28 m ·s-1。  相似文献   

15.
利用区域气象观测站、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析数据集(ECMWF Reanalysis v5,ERA5)、风廓线组网产品、S波段新一代天气雷达(S-band Doppler weather radar in China New Generation Weather Radar Network,CINRAD/SA)和X波段相控阵天气雷达(X-band phased array weather radar,XPAR)等资料,对2021年8月10日发生在黄河三角洲的3个EF0—EF1级非中气旋龙卷过程进行了详细分析。结果表明:(1)此次龙卷天气发生在高空干冷西北气流、低层横槽前暖脊和地面倒槽涡旋背景下,强烈的对流不稳定、0~6.0 km深厚层垂直风切变、大的低层湿度和接近1 000 m的抬升凝结高度,是此次弱非中气旋龙卷生成的有利环境条件;不利的条件是0~1.0 km低层垂直风切变非常弱。(2)海风锋、阵风锋触发对流,横槽分裂南下使上升运动加强;龙卷风暴影响时,临近区域气象观测站要素表现出明显变化,但风场的辐散特征表明观测站附近的大风还与风暴下沉气流有关。(3)龙卷母风暴为多单体合并、后向传播型风暴,双龙卷的形成与单体合并发展有关;雷暴下沉气流形成的阵风锋(出流边界)与海风锋合并使气旋性小尺度涡旋加强,当该小尺度气旋遇到经单体合并后发展加强的上升运动时,旋转运动进一步增强,从而激发了第3个龙卷。(4)CINRAD/SA只观测到气旋性涡旋和风暴顶辐散;XPAR在双龙卷期间观测到强切变和龙卷碎片特征,相关系数低值区明显。  相似文献   

16.
一次渤海强对流天气系统监测与大风成因探讨   总被引:1,自引:0,他引:1  
利用FY-2E卫星云图、天气雷达、雷电、海上平台、海岛站及海洋模式产品等资料,对2011年9月1日01—06时出现在渤海湾强对流天气成因进行综合分析。结果表明:位于燕山南麓较弱中β尺度云团,在500 hPa西风急流出口处、低层925 hPa切变线及层结不稳定条件下,触发多单体风暴重新发展,造成西岸区短时强降水天气及冰雹天气;中尺度系统主体入海后南压强度少变,在多单体风暴后部下沉气流与后部冷空气动量下传共同作用下,迅速加大渤海湾海区东北大风的分量,在同时具备天文大潮的条件下导致了南岸局部风暴潮灾害的发生。同步监测显示:云图中尺度象元TBB为-25°—-65℃,对流云团强弱交替变化时间为3—6 h,减弱后迅速转向东北岸区;三部天气雷达径向速度图先后监测到NE向低空急流"牛眼"时空尺度特征,同步垂直风廓线(VWP)反演出NE向低空急流由1000 m下降至300 m动量下传过程,与海岛站、平台监测值接近一致,中部与南部海区转为东北大风时间差为3—4 h;20时探空海岸带与风场垂直和水平切变明显,K指数为33℃,SI指数为-3.8℃,对流有效位能Cape为1555 J/kg;海洋中尺度数值产品3—6 h的K指数及海区辐合线的动态模拟与云图TBB中尺度象元、雷达回波移向相对一致,但风速明显偏小10—12 m/s。  相似文献   

17.
利用济南S波段双偏振多普勒雷达探测数据,结合探空、地面气象站观测和实地冰雹调查资料,对2020年6月1日影响山东中西部的一次强雹暴过程进行分析。结果表明:1)此次雹暴过程受高空槽影响,于当日中午在河北邢台市初生,移入山东境内后持续降雹近5 h,其中17:00后雹暴明显加强,冰雹灾害严重。2)典型降雹时次具有明显的三体散射特征;1.5~5.5 km高度冰雹区对应的反射率因子(ZH)均大于65 dBZ,差分反射率因子(ZDR)介于-2.6~1.5 dB,相关系数介于0.80~0.96;大冰雹多集中在低层前侧入流的左侧和前侧。3)多个单体于17:00前后演变成超级单体风暴,具有明显的有界弱回波区和中气旋结构,ZDR柱可指示雹暴主上升气流区的位置。4)水凝物相态分类产品给出的冰雹分布反映了空中冰雹的分布和演变,可从冰雹色标面积大小、连续性程度预估冰雹强弱,根据低仰角的冰雹色标预判冰雹落区。  相似文献   

18.
利用常规观测资料、区域自动气象观测站加密观测资料、多普勒雷达资料和NCEP/NCAR 1°×1°再分析资料,对2019年8月16日发生在日照一次龙卷天气过程的天气形势、环境物理量和涡旋特征进行了分析。结果表明:地面β中尺度辐合线和高空冷涡是此次龙卷发生的主要影响系统,较湿的近地面层、较低的抬升凝结高度为龙卷的发生提供了有利的环境条件。地面辐合线上的γ中尺度涡旋在显著深厚湿对流潜势下触发了对流,较大的对流有效位能(convective available potential energy,CAPE)和较强的0~3 km垂直风切变有利于初生对流的发展、合并,形成超级单体风暴。龙卷发生时,超级单体风暴低层右前侧出现钩状回波、入流缺口。较强的风暴单体、深厚持久的中气旋、中气旋强中心和底部迅速下降并重合、气旋性涡旋加强、最大风切变跃增、多个时次体扫出现龙卷涡旋特征(tornadic vortex signature,TVS)是地面龙卷发生的主要特征。对龙卷风暴单体移动起主导作用的因子在不同时段有所不同,前期主要受平流的影响;风暴单体合并的过程中,风暴移动受传播和平流的共同影响;风暴单体完全合并后,引导气流对风暴的移动又起主要作用。  相似文献   

19.
应用2009—2013年6—9月山东全省加密自动站资料、地面和探空观测资料,选出了98次区域性强降水过程。统计分析了产生强降水的天气系统特征,把500 hPa天气系统分为6种类型,850~700 hPa天气系统分为5种类型,地面影响系统分为7种类型。统计分析了强降水过程中及前期24个代表大气热力、水汽和动力特征的物理量,给出了最小值、最大值、平均值和各阈值所占百分率。850 hPa和700 hPa偏南风达到急流(≥12 m·s~(-1))强度的分别占56.1%和62.2%。对流有效位能(CAPE)≥300 J·kg~(-1)占72.6%。K指数≥30℃占86.7%。沙氏指数SI≤0占75.5%。925 hPaθse≥68℃占82.2%,850 hPaθ_(se)≥66℃占74.8%。GPS/MET水汽监测大气可降水量≥55mm占81.8%。850 hPa和700 hPa的水汽通量平均值分别为8.0和5.9 g·(cm·hPa·s)-1,水汽通量散度平均值分别为-4.6×10~(-9)和-2.7×10~(-9)g·(hPa·cm~2·s)~(-1)。925 hPa、850 hPa和700 hPa的涡度平均值分别为12.6×10~(-6)、12.3×10~(-6)和9×10~(-6)s~(-1),散度平均值分别为-5.5×10~(-6)、-3.1×10~(-6)、-3.4×10~(-6)s~(-1)。850 hPa、700 hPa和500 hPa的垂直速度平均值分别为-4.5×10~(-4)、-7.4×10~(-4)和-11.1×10~(-4)hPa·s~(-1)。  相似文献   

20.
利用山东威海CINRDA/SA多普勒雷达探测资料,结合常规天气图资料、地面自动气象观测站资料等,对2018年9月8日发生在威海文登机场附近的一次下击暴流天气特征进行分析。结果表明:1)此次下击暴流天气发生在高低空一致的西北气流背景下,午后太阳辐射使得低空大气加热显著,形成了强烈的不稳定层结。2)大气层结特征呈喇叭状温湿分布,850 h Pa以下接近干绝热的温度直减率,为下击暴流的发生提供了有利环境条件。3)地面辐合线为风暴单体的产生提供了动力抬升条件。4)从多普勒雷达产品上看,风暴初始回波发生在午后海风锋触发的晴空窄带回波上,通过单体间的合并加强,发展成为多单体风暴;下击暴流出现前,对流风暴回波强度及高度明显发展,成熟阶段的对流风暴伴有回波悬垂结构和三体散射特征,伴随着强反射率因子核心的持续下降,下击暴流迅速到达地面,径向速度图上存在明显的中层辐合、旋转、低层辐散的现象; 5 km以上60 dBZ强反射率因子核心的下降,结合径向速度中层辐合、低层辐散特征可提前3~9 min预警下击暴流的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号