首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of the photon path-length distribution function (PLDF) in a semi-infinite plane-parallel homogeneous atmosphere is discussed while the atmosphere scatters radiation according to the 2 × 2 Rayleigh-Cabannes phase matrix. The Piessens-Huysmans method of numerically inverting the Laplace transform which proved to be successful for the non-polarized radiation works in this special case as well. To employ this method we had to define the complex H-matrix and to find a fast method to determine its numerical values. For determining the average path-lengths and the dispersion we set up a system of integral equations the solution of which gave us the H-matrix and its first two derivatives with respect to the albedo of single scattering.The influence of different parameters characterizing the interaction of the polarized radiation with the atmosphere on the PLDF and the average path-length is studied in detail and a sample of average path-lengths is given in Table I.  相似文献   

2.
The determination of the average path-length of photons emerging from a finite planeparallel atmosphere with molecular scattering is discussed. We examine the effects of polarisation on the average path-length of the emergent radiation by comparing the results with those obtained for the atmosphere where the scattering obeys the scalar Rayleigh function. Only the axial radiation field is considered for both cases.To solve this problem we have used the integro-differential equations of Chandrasekhar for the diffuse scattering and transmission functions (or matrices). By differentiation of these equations with respect to the albedo of single scattering we obtain new equations the solution of which gives us the derivatives of the intensities of the emergent radiation at the boundaries.As in the case of scalar transfer the principles of invariance by Chandrasekhar may be used to find an adding scheme to obtain both the scattering and transmission matrices and their derivatives with respect to the albedo of single scattering. These derivatives are crucial in determining the average path length.The numerical experiments have shown that the impact of the polarisation on the average pathlength of the emergent radiation is the largest in the atmospheres with optical thickness less than, or equal to, three, reaching 6.9% in the reflected radiation.  相似文献   

3.
In the external layers of supermassive stars and thermal sources of X-ray radiation electron scattering contributes more to the opacity than free-free process. Therefore, the thermal radiation spectrum of supermassive stars must greatly differ from Planckian. The approximate formulae obtained for the radiation spectra are applicable to any objects with a predominant role of electron scattering in the opacity and power dependence of plasma temperature and density on geometrical depth of the layers.In thermal radiation sources with power dependence of plasma temperature on depth of the layer the formation of power radiation spectraF(v)v with >0 with >0 is possible. Such spectra can imitate the presence of non-thermal radiation mechanisms. This effect takes place also in the case of small optical depth on the Thomson scattering. Possibly, this effect is of interest for the theories of X-ray sources and X-ray solar flares.This case was considered also in the final version of the paper (Felten and Rees, 1972).  相似文献   

4.
The effects of partial redistribution of frequency on the formation of spectral lines in a static and spherically symmetric media have been investigated. The partial redistribution functionsR I andR II (Hummer, 1962) have been employed to calculate the lines for a two-level atom in non-LTE in a spherically symmetric medium with homogenous physical characteristics whose ratiosB/A (of outer to inner radii) are equal to 2 and 10. These results are compared with those formed in a plane-parallel medium withB/A=1. Two types of atmosphere are treated: (1) a pure scattering medium with =0 and =0, and (2) an atmosphere with a constant source of emission =10–4 and =0, where is the probability per scatter that a photon will be destroyed by collisional de-excitation and is the ratioK c/K l of opacity due to continuous absorption per unit interval of frequency to that in the line. Lines formed in complete redistribution also have been calculated for the sake of comparison, and the total optical depth in all cases has been taken to be 103 at the line centre.Vast differences have been found between the lines formed by complete and partial redistribution functions (which, for the sake of simplicity, we shall hereafter refer to as CRD and PRD, respectively). In the case of a purely scattering medium, a small amount of emission is observed in the wings for all cases of scattering functions in the spherical medium as a result of the combined effects of curvature and physical scattering. In the scattering medium, more photons are scattered into the cores of the lines by PRD than in the case of CRD. The lines formed in the medium with internal sources show emission in all cases with small absorption in the cores, except those lines formed by the angle-dependent PRD functions which again depend on the geometrical extension of the medium.  相似文献   

5.
We have found the most general solution for the Bianchi type-I equations in the Brans-Dicke theory (BDT) for the vacuum case. It is shown that forw > 500 the Universe will become isotropic for any amount of initial anisotropy, secondly it is shown that in the extended inflation scenario, the BDT-scalar field can avoid the inflation in one direction,R 3. In the other scale factorsR 1 andR 2 there is inflationary expansion.  相似文献   

6.
For the case of isotropic coherent scattering plus absorption a simple expression is given (Equation 12) to compute the mean intensity of the radiationJ v (as a function of optical depth v ) if the scattering coefficient v , the absorption coefficientK v and the Planck functionB v are given as a function of depth. In general the accuracy of this approximation is of the order of a few percent.A fairly simple temperature-correction procedure for the case when scattering is important is described.  相似文献   

7.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

8.
Cosmic ray (c. r.) propagation in interstellar magnetic fields is often considered in the diffusion approximation, i.e. by the diffusion equation in the coordinate space. Cosmic ray momentum distribution in this case is considered isotropic when the space gradients of c.r density are absent. This approach, with the use of an unfixed effective diffusion coefficientD independent of the energyE enables one to describe all the data available However, neither the diffusion mechanism nor the limits of applicability of the diffusion approximation is clear particularly ifD is independent ofE. Furthermore, the diffusion coefficientD must be expressed through the characteristics of the interstellar medium and possibly through the flux velocity and density of c.r. etc. One of the possible approaches for the analysis of the mechanism and characteristic features of c.r. distribution and isotropization is the account taken of the plasma effects and specifically, the study of c.r. flux instability arising when c.r. are moving in the interstellar plasma. As a result of such instability c.r. may generate waves of different types (magnetohydrodynamic, high-frequency plasma and other waves). Generation of waves and scattering on them result in isotropization of cosmic rays while their propagation under certain conditions turns out similar to that under diffusion.An attempt is made here to systematically analyse the avove mentioned plasma effects and to find out to what extent they are responsible for the behaviour of c.r. in the Galaxy. It turns out that c.r. In any case this is true if this mechanism is regarded as the only c.r. isotropization mechanizm within a wide energy range from 1 to 1000 GeV. Isotropization and spatial diffusion of c.r. up toE100–1000 GeV on the waves from external sources (for example, on the waves from the supernova shells) also proved impossible if the diffusion coefficient is assumed to be independent of c.r. energy. Some new possibilities of c.r. isotropization are also considered.A List of Notations D cosmic ray (c.r.) space diffusion coefficient - degree of c.r. anyisotropy - E,E kin total and kinetic particle energy - p,p particle momentum and its absolute value - angle between the particle momentum direction and the magnetic field direction (z-axis) - cos - v, particle velocity and its absolute value - c light velocity - f(p),f(E) momentum and energy particle distribution function - N( > E) = N( > p) = f(p) dp/(2)3 = E f dE c.r. particle density - c.r. spectrum index,N(>E)=KE –+1 - n H neutral particle density - n=n e=n i ion and electron density - H niagnetic field - T temperature - thermal velocities of electrons and ions - Boltzmann constant - Alfén velocity - M, m proton and electron masses - e electron charge - wave frequency - H =eH/Mc, = H (Mc 2/E) gyrofrequency of a plasma proton and relativistic particle - H =eH/mc gyrofrequency of an electron - plasma frequency - v ii,v ei,v en,v in collision frequencies between ions, electrons and ions, electrons and neutrals, ions and neutrals - growth rate of wave amplitude - k,k wave vector and its absolute value - angle between the directions of the vectorsk andH - wave energy density  相似文献   

9.
The frequency spectra of the interplanetary magnetic field fluctuations are the projection of their wavenumber spectra onto one dimension. Only the frequency spectra can be measured by spacecrafts. It is studied how their measured size depends on the direction of the mean fieldB 0, which structures the symmetry of the fluctuations relative to the solar wind system. It is specialized for the slab model, Alfvén waves, magneto-acoustic waves and the isotropic case. For the slab model the frequency spectra are proportional to , whereq is the spectral index and the angle betweenB 0 and the radial direction. For the diffusion coefficientK TT the relation holds.  相似文献   

10.
A Monte Carlo program has been developed in order to examine the influence of multiple Compton scattering in the atmosphere on the spectrum of cosmic diffuse gamma rays. It is shown that the corrections to the made to the measurements of the double-Compton gamma telescope at 2·5 gr cm–2 rest atmosphere by Schönfelder and Lichti (1974) are lower than 4% in the energy range between 1.5 and 10 MeV.Under support of a fellowship by the Deutscher Akademischer Austauschdienst  相似文献   

11.
Analytical investigations of the method of linear nonsingular integral equations, originally proposed by É. Kh. Danielyan [Astrofizika 36,225 (1993)] for the solution of problems in the theory of radiative transport in a medium of finite optical thickness with isotropic scattering, are continued in the present article. It is shown that the solution of problems of the stated class reduce to the determination of only the functions u ± (, ) in the general case with true absorption. Explicit expressions are obtained for these functions at =0. The feasibility of a complete analytical solution of the problem is newly formulated as the solution of a Fredholm integral equation on the semiaxis with a kernel that admits representation by a superposition of exponential functions [Eq. (25)]. The choice of an efficient procedure for determining the Ambartsumyan -function for a semiinfinite medium is discussed. In particular, a new equation is given for this function.Translated from Astrofizika, Vol. 37, No. 1, pp. 129–145, January–March, 1994.  相似文献   

12.
The physical properties in the coronal disturbance (CD) (W90, N25°) associated with an active prominence are investigated on the basis of the intensities and profiles of 5694 Å Caxv and 6702 Å Nixv lines and continuum measured in the eclipse coronal spectra of 31 July, 1981. The spectrograms have been taken with a dispersion of between 7 to 10 Å mm-1 and a solar image of 15 mm in diameter. The following characteristics of the CD have been deduced. The CD occurred cospatially with an active prominence and consisted of two discrete regions with different temperatures penetrating each other. (1) Caxv region: T e= 3.8 × 106 K, the length along the slit of the spectrograph Z 65000 km, the effective line-of-sight length L 20000 km, the average electron density , nonthermal velocities V t= (20–32) km s-1. (2)Nixv-Caxiii region: T e= 2.3 × 106 K, Z 37000 km, L 35000 km, n e 1 × 109 cm-3, V t= (23–30) km s-1. A macroscopic mass motion has been discovered within the Nixv region of the CD from the Doppler shifts of the 6702 Å Nixv line: V r= + 27 km s-1 on the lower and V r= - 12 km s-1 on the upper border of the CD. The average height of the CD was H 0.08 R . The radial velocities in the prominence found from the emission line tilts are + 12 and - 8 km s-1 on its lower and upper borders. A similar picture of the mass motion in the CD and the prominence speaks in favour of an intimate relation between them.  相似文献   

13.
Numerical calculations have been made of the radial gradients and the anisotropyvector atr=1 AU due to galactic cosmic-ray protons and helium nuclei. The model used assumes transport by convection and anisotropic diffusion, and includes the energy losses due to adiabatic deceleration. The present calculations are for the 1964–65 solar minimum. An important constraint applied ineach case was that the model reproduces the electron modulation known from deductions of the galactic spectrum and observations of the near-Earth spectrum; and also reproduces the near-Earth proton and helium nuclei spectra. The diffusion coefficients have been based upon those deduced from magnetic-field power spectra.The principal aim has been to provide estimates of radial gradients and anisotropies, particularly at kinetic energiesT100 MeV/nucleon, by the complete solution of realistic models. Typical values for protons, obtained with a galactic differential number density (total energy)–2.5, atT50 MeV are: radial gradient, 25%/AU; radial anisotropy, –0.2%; azimuthal anisotropy, 0.2%. These values change markedly when the galactic spectrum is cut-off or greatly enhanced atT<150 MeV, but the intensity spectrum near Earth remains substantially unchanged.It has been shown that it is possible to obtain negative radial gradients and positive radial anisotropies atT50 MeV for galactic particles and thus to mimic solar sources. The radial gradient for 1964–65 reported by Anderson (1968) and by Krimigis and Venkatesan (1969) are shown to be consistent with the diffusion coefficient deduced from the magnetic-field power spectrum; those reported by O'Gallagher are higher than expected and that for 20T30 MeV protons appears to be inconsistent. More precise data on conditions throughout the solar cavity are required if more definitive gradients and anisotropies are to be determined.  相似文献   

14.
The redshift c caused by the scattering of photons in the chromosphere of Canopus and in the interstellar matter is obtained from the measurements of wavelength, intensity and equivalent width of 191 spectral lines published in 1942. The result is c with a new radial velocityV r =–3.3±2.4 km s–1. The reliability of the results is briefly discussed.  相似文献   

15.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

16.
By considering the consecutive effects of synchrotron reabsorption, Compton scattering and other kinds of energy losses of relativistic electrons, it may be possibile to form a universal distribution of electrons in the region of reabsorption (synchrotron reactor). This will be either a power law with a power index of the energy spectrumn r=3–5, or a relativistic Maxwell distribution with an electron temperatureT e=4T b(1+), where is the ratio of Compton (or other losses) to synchrotron losses, andT bis the brightness temperature of the radiation. Since the total energy losses of electrons in the reactor is equal to zero, this ensures the continuous existence and accumulation of relativistic electrons in the region of reabsorption and their associated hard scattered radiation. Multiple Compton scattering produces a specific stepped power distribution of scattered radiation by which we can identify the reactor. In the nuclei of quasars W Hand, therefore,n r=3; hence the spectral index of scattered radiation in the corresponding ranges (optical, UV, X- and -ray) is .Consideration of other kinds of losses and gains of energy by electrons can lead to the dependencen =3–5(E) — where (E) may have either positive or negative values—which, in turn, leads to the frequency dependence of the spectral index of scattered radiation = 1 – (), |()| < 1, |(E)| < 1.Within the framework of the model being considered, the physical parameters of the nucleus of quasar 3C 273 are calculated.  相似文献   

17.
The implications of the intrinsic luminosity evolution with cosmological epoch on the value of the density parameter () and evolution of radio sizes of extragalactic radio sources have been considered. It is shown that a power law evolution model of the sortP (1 +z) can be used to contrain the value of . In the presence of a strong luminosity evolution, the model yields an upper limit of 0.5.It is also shown that the angular diameter redshift ( – z) relation for quasars can be interpreted in terms of the assumed luminosity evolution combined with a luminosity-linear size correlation with little or no linear size evolution required. On the other hand, strong linear size evolution is needed to explain the – z data for radio galaxies independent of luminosity.  相似文献   

18.
In the quasi-linear theory of pitch angle scattering the power spectrum of magnetic field fluctuations is related to the shape of the pitch angle diffusion coefficient D(), the absolute value of the mean free path , and the rigidity dependence of the mean free path (R). We discuss these relations in detail during the solar particle event of 11 April, 1978 which was observed on HELIOS-2 at a distance of 0.49 AU from the Sun. Magnetic field measurements obtained during the time of the event are used as a basis for the layer model in which the method of particle trajectories in an actually measured field is used to simulate pitch angle diffusion. The values of D() and based on the trajectory simulation for 100 MeV protons (field approach) are compared with results obtained from solar proton data (particle approach) and with predictions from quasi-linear theory based on the additional assumption of the slab model for magnetic field fluctuations (QLT approach). The time of the event is characterized by a high level of field fluctuations, the observed mean free path of about 0.03 AU for 100 MeV protons is smaller than the average value near 1 AU. Results from the field and particle approaches agree surprisingly well. The remaining difference in the mean free path of about a factor of 2 could be due to tangential discontinuities which are measured by the magnetometer, but not seen by the real particles traveling along the average field. The results from the field and QLT approaches based on the same set of magnetic field measurements differ by about a factor of 4. One of the reasons for this discrepancy is that the conditions for resonance scattering are only marginally valid. In addition, the wave vectors representing Alfvén-type fluctuations may not be totally field aligned. This deviation from the slab model would cause an increase of the theoretically predicted mean free path and lead to better agreement with the other two approaches.  相似文献   

19.
Three new approximate forms for theH-function for isotropic scattering have been developed. Each of the forms involve three unknown functions of albedo .  相似文献   

20.
Detailed single and multiple scattering calculations were carried out for a spherically symmetric cometary atmosphere irradiated by a plane parallel source. Using simplifying assumptions in the single scattering approximation, analytical expressions were derived for the total flux impinging the cometary nucleus, which was shown to be a decreasing function of the coma opacity. Moreover, while highly anisotropic phase functions resulted in more light reaching the nucleus than was the case for isotropic phase functions, the net energy flux at the nucleus surface was still found to be smaller in the presence of a coma than in the no coma case. This increased flux due to the anisotropic phase functions was attributed mostly to the effect of directional scattering in the forward Sun-comet axis. The isotropic multiply scattered flux at the surface was found tobe an increasing function of the opacity, , for 2.5. At larger values of , the maximum in the downward directed scattered flux was still seen to increase, but occurred at a height of several radii above the nucleus, resulting in a reduction at the surface. On the other hand, the total flux at the surface was again shown to be a decreasing function of and always less than in the no coma case. Finally, on comparing the multiply scattered flux with that obtained in the plane parallel approximation, it was quite apparent that except in the vicinity of the Sun-comet axis, the plane parallel geometry tends to underestimate the degree of scattering.NRC Resident Research Associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号