首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《测量评论》2013,45(69):318-322
Abstract

The Transverse Mercator Projection, now in use for the new O.S. triangulation and mapping of Great Britain, has been the subject of several recent articles in the “Empire Surpey Review. The formulae of the projection itself have been given by various writers, from Gauss, Schreiber and Jordan to Hristow, Tardi, Lee, Hotine and others—not, it is to be regretted, with complete agreement, in all cases. For the purpose for which these formulae have hitherto been employed, in zones of restricted width and in relatively low latitudes, the completeness with which they were given was adequate, and the omission of certain smaller terms, in the fourth and higher powers of the eccentricity, was of no practical importance. In the case of the British grid, however, we have to cover a zone which must be considered as having a total width of some ten to twelve degrees of longitude at least, and extending to latitude 61 °north. This means, firstly, that terms which have as their initial co-efficients the fourth and sixth powers of the longitude ω (or of y) will be of greater magnitude than usual, and secondly that tan2 ? and tan4 ? are likewise greatly increased. Lastly, an inspection of the formulae (as hitherto available) shows a definite tendency for the numerical co-efficients of terms to increase as the terms themselves decrease—e.g. terms in η4, η6, etc.  相似文献   

2.
The weighted total least squares (TLS) method has been developed to deal with observation equations, which are functions of both unknown parameters of interest and other measured data contaminated with random errors. Such an observation model is well known as an errors-in-variables (EIV) model and almost always solved as a nonlinear equality-constrained adjustment problem. We reformulate it as a nonlinear adjustment model without constraints and further extend it to a partial EIV model, in which not all the elements of the design matrix are random. As a result, the total number of unknowns in the normal equations has been significantly reduced. We derive a set of formulae for algorithmic implementation to numerically estimate the unknown model parameters. Since little statistical results about the TLS estimator in the case of finite samples are available, we investigate the statistical consequences of nonlinearity on the nonlinear TLS estimate, including the first order approximation of accuracy, nonlinear confidence region and bias of the nonlinear TLS estimate, and use the bias-corrected residuals to estimate the variance of unit weight.  相似文献   

3.
在多类观测数据联合平差中,存在某类观测值的验前协方差阵正确而其他类不正确的情况,传统Helmert方差分量估计在求解此类问题时没有对正确的验前协方差阵加以区别,从而造成正确的随机模型经估计后同样也被调整。针对上述情况,首先分析了Helmert方差分量估计迭代收敛结果的实质,然后提出了随机模型基准的概念,并推导了基于随机模型基准的Helmert方差分量估计公式。经计算表明,新公式完全可行,可以用于解决实际问题。  相似文献   

4.
Motivated by the existing theory of the geometric characteristics of linear generalized inverses of linear mappings, an attempt is made to establish a corresponding mathematical theory for nonlinear generalized inverses of nonlinear mappings in finite- dimensional spaces. The theory relies on the concept of fiberings consisting of disjoint manifolds (fibers) in which the domain and range spaces of the mappings are partitioned. Fiberings replace the quotient spaces generated by some characteristic subspaces in the linear case. In addition to the simple generalized inverse, the minimum-distance and the x 0-nearest generalized inverse are introduced and characterized, in analogy with the least-squares and the minimum-norm generalized inverses of the linear case. The theory is specialized to the geodetic mapping from network coordinates to observables and the nonlinear transformations (Baarda's S-transformations) between different solutions are defined with the help of transformation parameters obtained from the solution of nonlinear equations. In particular, the transformations from any solution to an x 0-nearest solution (corresponding to Meissl's inner solution) are given for two- and three-dimensional networks for both the similarity and the rigid transformation case. Finally the nonlinear theory is specialized to the linear case with the help of the singular-value decomposition and algebraic expressions with specific geometric meaning are given for all possible types of generalized inverses. Received: 11 April 1996 / Accepted: 19 April 1997  相似文献   

5.
Let there be given a twodimensional symmetric rank two tensor of random type (examples:strain, stress) which is either directly observed or indirectly estimated from observations by an adjustment procedure. Under the assumption of normalityof tensor components we compute the joint probability density functionas well as the marginal probability density functionsof its eigenspectra (eigenvalues) and eigendirections (orientation parameters). Due to the nonlinearity of the relation between eigenspectra-eigendirections and the random tensor components, via the inverse nonlinear error propagationbiases and aliases of their first and centralized second moments (mean value, variance-covariance) are expressed in terms of Jacobianand Hessianmatrices. The joint probability density function and the first and second moments thus form the fundamental of hypothesis testing and qualify control of eigenspectra (eigenvalues, principal components) and eigendirections (orientation parameters, eigenvectors, principial direction) of a twodimensional, symmetric rank two random tensor.  相似文献   

6.
B. Heck  K. Seitz 《Journal of Geodesy》2003,77(3-4):182-192
The geodetic boundary value problem (GBVP) was originally formulated for the topographic surface of the Earth. It degenerates to an ellipsoidal problem, for example when topographic and downward continuation reductions have been applied. Although these ellipsoidal GBVPs possess a simpler structure than the original ones, they cannot be solved analytically, since the boundary condition still contains disturbing terms due to anisotropy, ellipticity and centrifugal components in the reference potential. Solutions of the so-called scalar-free version of the GBVP, upon which most recent practical calculations of geoidal and quasigeoidal heights are based, are considered. Starting at the linearized boundary condition and presupposing a normal field of Somigliana–Pizzetti type, the boundary condition described in spherical coordinates is expanded into a series with respect to the flattening f of the Earth. This series is truncated after the linear terms in f, and first-order solutions of the corresponding GBVP are developed in closed form on the basis of spherical integral formulae, modified by suitable reduction terms. Three alternative representations of the solution are discussed, implying corrections by adding a first-order non-spherical term to the solution, by reducing the boundary data, or by modifying the integration kernel. A numerically efficient procedure for the evaluation of ellipsoidal effects, in the case of the linearized scalar-free version of the GBVP, involving first-order ellipsoidal terms in the boundary condition, is derived, utilizing geopotential models such as EGM96.  相似文献   

7.
《测量评论》2013,45(72):74-82
Abstract

Extensions were given for all these formulae, so that precise results may now be obtained even for lines of 500 miles in latitudes above 45°. The present instalment gives the extension of the Clarke approximate (sic) formulae to lines of 500miles, with a practical example and general conclusions: the great advantage of the method is that 8-figuretables sufficeto give rigorous results.  相似文献   

8.
《测量评论》2013,45(30):462-466
Abstract

The fixation of Minor Triangulation in a Primary system does not, in general, warrant rigorous adjustments of figures; less laborious methods are desirable. For Secondary work a least square adjustment to approximate coordinates is quite sufficient, while, for Tertiary, graphical solutions are amply accurate. Apart from that, cases may arise to which a figure adjustment is not applicable, as in the small net shown in Fig. 2, p. 464. The line BC cannot be equated to the line AB in the ordinary way since it is not the side of a triangle. In this case an adjustment to approxima te coordina tes will overcome the difficulty.  相似文献   

9.
The ED87 Adjustment   总被引:1,自引:0,他引:1  
Summary Following the introduction to the RETrig project and its history, the data included in the adjustment, as well as some test procedures concerning the data are, presented. Then the formulae for the combined solution of terrestrial and space data, originally published by Wolf, but used for the ED87 with modifications, are outlined. The resulting coordinate set was approved by the IAG as the European Datum 1987 (ED87). The strength of the figure is investigated by relative error ellipses between selected points. Finally, the first iteration of the numerical solution resulting in shifts for the ED87 coordinates is presented. This article is a résumé of the final report of ED87 calledthe ED87 Coordinates, Ehrnsperger (1989).  相似文献   

10.
In this paper, the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied, in which the rank-defect characteristic is discovered first up to now. On the basis of the survey-line systematic error model, the formulae of the rank-defect adjustment model are deduced according to modern adjustment theory. An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model. Moreover, it is proved that the semi-systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.  相似文献   

11.
In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank-defect haracteristic is discovered first up to now.On the basis of the survey-line systematic error model,the formulae of the rank-defect adjustment model are deduced according to modern adjustment theory.An examle of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi-systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.  相似文献   

12.
《测量评论》2013,45(94):372-376
Abstract

In the October 1953 issue of this Review (E.S.R. xii, 90, 174), Mr. J. G. Freislich has written of the difficulties of a southern hemisphere computer attempting to use astronomical formulae from a textbook prepared for use in the northern hemisphere. He proposes a solution in which different conventions are adopted in the two hemispheres, leading to different formulae for the two cases, a solution which the present writer does not favour.  相似文献   

13.
Principle, software and experiment of GPS-supported aerotriangulation   总被引:4,自引:0,他引:4  
1 IntroductionAs is now well known, the high accurate point de-termination with airborne remOe sensing data hasalways ben one of the most fundaxnental prObletns..in aerial photOgrammtry. According to the princi-ple of the geOmtry reversal in photOgramrntry,the interior and exterior orientation elements ofaerial phOtOgraphs must first be known in order toreconstnJct the measuring stereo geometric medels.For the past 60 years, however, the interior orienta-tion parameters of carnera were main…  相似文献   

14.
《测量评论》2013,45(86):372-374
Abstract

Another form of Mr. Lauf's expression for a conformal adjustment of a system of coordinated points may be of interest. These are assumed to be already in harmony with i control points and are to be brought into agreement with j further points. (Mr. Lauf deals explicitly in his paper with the special case i = 2, j = 1, but he adumbrates a general solution.)  相似文献   

15.
《测量评论》2013,45(89):134-140
Abstract

The formulae given in this paper can be used for a station adjustment at a trigonometric station and also for the adjustment of errors in a level survey. As applied to levelling, the problem consists in finding the most probable values of the reduced levels of a number of points where the observed level differences between the points are not consistent with each other. It can be shown that the required values of the reduced levels are those which reduce the sum of the squares of the residual errors to a minimum, where the residual error is defined as the difference between the calculated and observed levels.  相似文献   

16.
A calculation of quasigeoidal heights and plumb-line deflections according to Molodensky formulae was carried out under elimination of the effect of topography from gravity anomalies. After the masses of topography had been removed a smoothed-out surface passing through astronomical and gravity stations was considered as representing the physical surface of the Earth. Thus it has been practically rendered possible to use the first-approximation formulae of Molodensky, and, in many cases, also the “zero-approximation” formulae analogous to the formulae of Stokes and Vening-Meinesz. The effect of the restored masses of topography was then added to the quantities found; the said effect was expressed as the effect of topography condensed on the normal equipotential surface passing through the point under investigation, plus a correction for condensation. Following some transformations, the resulting formulae (13) and (18) were obtained which formulae differ in their “zero-approximation” (15) and (20) from traditional formulas in that they contain terrait reductions added to free-air anomalies. Moreover, in the calculation of plumb-line deflections directly in mountain regions a correction for differing effects of topography before and after its condensation is to be introduced. A tentative expansion of terrain reduction in terms of spherical harmonics up to the third order is given; it can be seen therefrom that the Stokes series in its usual form is subject to a mean arror about 15–20%. It is also shown that the expansion of free-air anomalies in terms of spherical functions contains a first-order harmonic with a mean values about ±0.3 mgl. The said harmonic practically disappears in the expansion of the sum of free-air anomalies and terrain reductions.  相似文献   

17.
Adjustment has been based on the assumption that random errors of measurements are added to functional models. In geodetic practice, we know that accuracy formulae of modern geodetic measurements often consist of two parts: one proportional to the measured quantity and the other constant. From the statistical point of view, such measurements are of mixed multiplicative and additive random errors. However, almost no adjustment has been developed to strictly address geodetic data contaminated by mixed multiplicative and additive random errors from the statistical point of view. We systematically develop adjustment methods for geodetic data contaminated with multiplicative and additive errors. More precisely, we discuss the ordinary least squares (LS) and weighted LS methods and extend the bias-corrected weighted LS method of Xu and Shimada (Commun Stat B29:83–96, 2000) to the case of mixed multiplicative and additive random errors. The first order approximation of accuracy for all these three methods is derived. We derive the biases of weighted LS estimates. The three methods are then demonstrated and compared with a synthetic example of surface interpolation. The bias-corrected weighted LS estimate is unbiased up to the second order approximation and is of the best accuracy. Although the LS method can warrant an unbiased estimate for a linear model with multiplicative and additive errors, it is less accurate and always produces a very poor estimate of the variance of unit weight.  相似文献   

18.
Estimability analysis of variance and covariance components   总被引:1,自引:1,他引:1  
Although variance and covariance components have been extensively investigated and a number of elegant formulae to compute them have been derived, nothing is known, without any ambiguity, about their estimability in the case of a fully unknown variance–covariance matrix. We prove that variance and covariance components in this case are not estimable, thus clarifying the ambiguity of the literature on the topic and correcting some erroneous statements in the literature. We also give a new theorem on the estimability of a linear function of variance and covariance components. Then we propose a new method to estimate the variance–covariance matrix with special structure, which can presumably be represented by, at most, r(r + 1)/2 independent parameters to guarantee its estimability in such a subspace, by directly implementing the positive definiteness of the matrix as constraint to the restricted maximum likelihood method, where r is the number of redundant measurements. Therefore, our estimates of the variance and covariance components always reconstruct a positive definite matrix and are always physically meaningful.  相似文献   

19.
The derivation of a universal formula for the variance-covariance component estimation is discussed. The formula is derived adopting the universal functional model (the condition adjustment with unknown parameters and constraints among the parameters),and is based on the maximum likelihood principle. The derived formula in this paper can be applied to all adjustment models for estimating variance-covariance components, which expands the formulas given by K. Kubik (1970)and K. R. Koch (1986).Besides, it is proved that the estimator given in this paper is equivalent to that of Helmert type and best quadratic unbiased estimation (BQUE).  相似文献   

20.
Integrated adjustment of CHAMP, GRACE, and GPS data   总被引:16,自引:3,他引:13  
Various types of observations, such as space-borne Global positioning system (GPS) code and phase data, accelerometer data, K-band range and range-rate data, and ground-based satellite laser ranging data of the CHAllenging Minisatellite Payload (CHAMP) and GRAvity Climate Experiment (GRACE) satellite missions, are used together with ground-based GPS code and phase data in a rigorous adjustment to eventually solve for the ephemerides of the CHAMP, GRACE, and GPS satellites, geocenter variations, and low-degree gravity field parameters. It turns out that this integrated adjustment considerably improves the accuracy of the ephemerides for the high and low satellites, geocenter variations, and gravity field parameters, compared to the case when the adjustment is carried out stepwise or in individual satellite solutions.Acknowledgments. This study has been supported by the German Ministry of Education and Research through the Geotechnologies Programme grants 03F0333A/CHAMP and 03F0326A/GRACE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号