首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a combined method, using sP depth-phase data and double-difference arrival times, to determine the precise hypocenter locations of earthquakes that occur under the Pacific Ocean outside of the area covered by the land-based seismic network. We assess the effectiveness of the combined method using a data set of P- and S-wave arrival times and sP depth phase from suboceanic earthquakes recorded by both land-based seismic stations and offshore seismic stations (OFS). The hypocenters of the offshore earthquakes relocated using the combined method are consistent with those determined using the standard location method and OFS data. The differences in the hypocenters relocated by the two methods are less than 4 km. We applied the method to the subduction region that underlies the Kanto district, central Japan, and located a large number of earthquakes that occurred beneath the Pacific Ocean. We then determined the detailed 3D seismic velocity structure by inverting a large number of arrival times of P- and S-waves and sP depth phase from the relocated earthquakes in the study region. High-velocity anomalies related to the cold subducting Pacific slab and low-velocity anomalies related to the hot mantle wedge are clearly imaged. Beneath active volcanoes, low-velocity zones are visible from the surface to a depth of 100 km, reflecting fluids released by dehydration of the subducting Pacific slab. Strong lateral heterogeneities are revealed on the upper boundary of the Pacific slab beneath the forearc region. The low-velocity areas under the offshore region are associated with low seismicity and weak interplate coupling. A low-velocity layer is imaged along the upper boundary of the Philippine Sea slab in the northern part of Kanto district, which may reflect dehydration of the slab. Our tomographic images indicate that the overlaying Philippine Sea plate has effects on the spatial distribution of active volcanoes related to the subducting Pacific slab in the study region.  相似文献   

2.
超低频地磁异常与2000年日本伊豆诸岛震群的关系   总被引:2,自引:0,他引:2  
通过研究电磁现象与大地震的联系有助于建立监测地壳运动(如地震、火山喷发)的电磁方法。在地震的紧急预报中,超低频(ULF)地磁的方法是最有前途的方法之一。本文将一种主要分量分析的新方法应用在了与2000年日本伊豆诸岛震群有关的ULF地磁资料的研究中。这次震群活动始于2000年6月26日,同年9月结束。在这次地震活动中,观测到5次震级超过6级的大地震(分别发生在7月1日、8日、15日、30日和8月18日)。在此期间,我们的超低频地磁观测站幸运地记录下了数据,其中有三个观测站相距很近(大约5km的距离),距地震中心大约80~100km。因为我们可以在正交分解的基础上,用主要分量分析法将一些噪声分辨出来,所以我们把主要分量分析法用在了超低频地磁水平方向的NS分量中。我们研究了主要分量分析法结果中本征值和本征矢量的临时变化,这些结果总结如下。第一主要分量是源于日地交互作用影响的信号,如:地磁脉动。第一主要分量的本征矢量的变化说明这种信号在整个分析过程中非常稳定。第二主要分量中混有当地的人为的噪音。而最小的第三分量出现在伊豆半岛当地的子夜,在大地震前几天,第三本征值明显地增加。大约在震群活动开始前三个月,第三本征值的水平有微小增强。相应地,在信号的子空间中本征矢量方向的模式同时改变,在震群活动后又恢复到了其原来的水平。这些特征可能与大地震有关。最后我们强调主要分量分析的方法是目前监测地壳活动最有前途的方法。  相似文献   

3.
The Sakuma–Tenryu district consists mainly of pelitic and basic schists. Its metamorphic sequence has been divided into two units, the Shirakura and the Sejiri units. We carried out K–Ar analyses of phengite separates and X‐ray diffraction analyses of carbonaceous materials from the pelitic schists of both units. The age–d002 relationships show that the ages become older (66–73 Ma) in the Shirakura unit and younger (57–48 Ma) in the latter with increasing metamorphic temperature. The former has a positive relationship observed in the Sanbagawa meta‐Accretionary Complex (meta‐AC) (Sanbagawa metamorphic belt sensu stricto) in central Shikoku and the latter, a negative one in the Shimanto meta‐AC (a subunit of traditional Sanbagawa belt) of the Kanto Mountains. These contrasting age–temperature relationships are due to different tectonic styles relating to the exhumation of the metamorphic sequences. The duration from the peak metamorphism to the closure of the phengite K–Ar system was significantly different between the two metamorphic sequences: longer than 31 my in the Sanbagawa meta‐AC and shorter than 13 my in the Shimanto meta‐AC. The different natures of subducted plate boundaries may cause the different exhumation processes of metamorphic belts.  相似文献   

4.
The Angareb Ring Dike Complex is located in Begemder Province in northwestern Ethiopia, 55 kilometers NNW of the provincial capital Gondar. The structure was first identified in 1973 from Landsat 1 satellite imagery analysis of the East African Rift System. The complex is exposed on the floor of the Tana Graben, a feature bearing structural affinity to the East African Rift. A post-early Miocene age is ascribed to the complex. Association with other as yet univestigated circular features may define a volcanic province of early continental rifting in Ethiopia. Contained within the ring structure is a heterogenous tuff breccia of over 100 cubic kilometers in volume, composed of massive agglomorates, ash flows, welded tuffs, and subaqueous tuffs. The tuff is interpreted as filling a subsiding caldron above an eviscerating magma chamber. Mineralogy and chemical analyses depict a fractionating basaltic magma of transitional-mildly alkaline composition. Partial melting of the Precambrian basement is envisioned to explain the subalkaline granites. Comparison of chemical data with regional petrochemical interpretations suggests that the complex represents the beginning of central vent activity in the waning stages of Tertiary volcanism in Ethiopia.  相似文献   

5.
Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma ± 30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope gemhemistry studies indicate that the dike swarm was products of back-arc basin spreading ridge and the magma originated from the depleted mantle region which was metasomatized by LILE-rich liquids/melts derived from subduction slab. Project supported by the National Natural Science Foundation of China.  相似文献   

6.
 Kuju Volcano lies near Aso Caldera at the center of Kyushu Island, western Japan. After a few hundred years of dormancy, a phreatic explosion accompanied by a small ash eruption occurred on 11 October 1995. This study was undertaken to determine the subsurface seismic velocity structure associated with the active magmatic regime in the Kuju volcanic region. The three-dimensional, upper crustal, P-wave velocity structure beneath Kuju Volcano was determined using methods for the simultaneous inversion of P-wave arrival times from local earthquakes in and around the Kuju volcanic region for velocities and hypocentral parameters. Results reveal two shallower low-velocity anomalies located in the northern and southern parts of Kuju Volcano, consistent with the presence of significant negative Bouguer gravity anomalies. In addition, a high-velocity anomaly is located approximately 5 km northwest of Mt. Kuju, one of the domes in Kuju Volcano. Beneath this high-velocity anomaly, a low-velocity anomaly is present. This velocity structure suggests a magmatic regime that has a lid consisting of cooled solid material overlying a chamber of partially molten material. Received: 23 September 1997 / Accepted: 20 June 1998  相似文献   

7.
Kazuaki Okamoto 《Island Arc》1998,7(1-2):283-294
The orientation of straight inclusion trails within albite porphyroblasts from basic schists has been measured around a north-closure fold, in the Besshi district of the Sambagawa Belt, central Shikoku, Japan. The porphyroblasts are aligned with their longest dimension parallel to both the subhorizontal, east–west-directed mineral lineation and to the fold axis. There is a systematic variation in inclusion-trail geometry between the upper (northern) and lower (southern) fold limbs. The shear sense deduced from quartz c-axis fabrics is top-to-the-west in the upper limb and top-to-the-east in the lower limb. Based on observed variations in porphyroblast inclusion trails, the structural history can be modelled as follows: (i) shear flow caused east–west stretching and folding of the metamorphic zonation; (ii) east–west ductile shear resulted in opposing senses of shear in the upper and lower limbs as the eclogite body situated in the core of the fold was extruded to the east.  相似文献   

8.
盖州青石岭地震序列发震构造初探   总被引:2,自引:0,他引:2       下载免费PDF全文
张博  钱蕊  夏彩韵 《地震学报》2017,39(6):848-859
利用双差定位方法对盖州青石岭震群2012年2月至2015年8月的地震活动进行了重新定位,并使用CAP方法和P波初动法计算了ML≥4.0地震的震源机制解,之后结合盖州地区的地震地质资料,分析了青石岭震群的发震构造.结果表明:青石岭震群在平面上呈NW向分布,地震活动主要分布在6 km×3 km的矩形范围内,震源深度为7—10 km;较大地震的震源机制解的走向与精定位后地震的优势分布方向一致;综合分析双差定位结果、震源机制解和发震区的地震地质等资料,初步认为九寨—盖县北段西北侧存在NW向次级铲式正断层,青石岭震群即为该断层在区域应力场作用下不断地左旋走滑-拉张错动造成的.   相似文献   

9.
The Sanbagawa metamorphic terrain of the study area is divided into two units, the Shirakura and Sejiri units. The metamorphic thermal structure is interpreted on the basis of the degree of graphitization (GD) of carbonaceous material in pelitic schists. The areal variations of the metamorphic grade are presented by the distribution of GD calculated using the Lc and d002 of carbonaceous material. As a result, the two units are classified into four metamorphic zones, respectively: A1, A2, B1 and B2 for the Shirakura Unit; and I1, I2, II1 and II2 for the Sejiri Unit. The metamorphic grades of A1, A2, I1 and I2 are included in the chlorite zone, and that of B1, B2, II1 and II2 in the garnet zone of the Sanbagawa metamorphism. The degree of graphitization at the boundary between A2 and B1 zones is the same as that between I2 and II1 zones. Detailed study on the variation of GD suggests that the present‐day structure of the study area is best interpreted as a model of shuffled‐cards structure. An estimated minimum thickness of a stack of continuous cards is about 25 m. The compositions of garnet in pelitic schists and of amphibole in basic schists are different from those in the identical metamorphic range of the Shirakura and Sejiri units. It is suggested that rocks of the Shirakura Unit were metamorphosed under higher P/T conditions than those of the Sejiri Unit.  相似文献   

10.
The first P-arrival time data from local earthquakes are inverted for two-dimensional variation of the depths to the Conrad and Moho discontinuities in the Kyushu district, southwest Japan. At the same time, earthquake hypocenters and station corrections are determined from the data. The depths to the discontinuities are estimated by minimizing the travel time residuals of first P-arrival phases for 608 earthquakes observed at 57 seismic stations. In the land area of Kyushu, the Conrad and Moho discontinuities are located within the depth ranges of 16–18 and 34–40 km, respectively. The Conrad discontinuity is not as largely undulated as the Moho discontinuity. The depth to the Moho is deep along the east coast of Kyushu, and the deepest Moho is closely related to markedly low velocity of P wave. We regard the deepest Moho as reflecting the Kyushu–Palau ridge subducting beneath the Kyushu district, together with the Philippine Sea slab. In western Kyushu, the shallow Moho is spreading in the north–northeast–south–southwest direction in the Okinawa trough region. Based on the presence of low-velocity anomaly in three-dimensional velocity structure and seismogenic stress field of shallow crustal earthquakes, the shallow Moho is interpreted as being due to lower crustal erosion associated with a small-scale mantle upwelling in the Okinawa trough region. The velocity discontinuity undulation basically has insignificant effect on hypocenter determination of the local earthquakes, but the Moho topography makes changes in focal depths of some upper mantle earthquakes. The depth variation of the Moho discontinuity has a good correlation with the Bouguer gravity anomaly map; i.e., the shallow Moho of western Kyushu and the deep Moho of eastern Kyushu closely correlate with the positive and negative Bouguer gravity anomalies, respectively.  相似文献   

11.
Tomohiro  Toki  Toshitaka  Gamo  Urumu  Tsunogai 《Island Arc》2006,15(3):285-291
Abstract   We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2H6 in the samples. A combination of the CH4/C2H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13      < δ13     suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials.  相似文献   

12.
The model for the 2000 dike intrusion event between Kozushima and Miyakejima volcano, Japan, was reinvestigated. After the sudden earthquake swarm in Miyakejima volcano, a dike intrusion of large volume was detected by the nationwide GPS network (Geonet). The displacements detected with GPS stations over an area with a radius of about 200 km shows a distribution that is consistent with the dike source being located near Miyakejima volcano.The dike was intruded northwestwards between Miyakejima and the neighboring Kozushima volcano. We searched for the parameters in the models that reproduce the regional displacements due to dike intrusion between Miyakejima and Kozushiima islands. We tested three models, (1) the model with a single dike, (2) the model with a dike and a point dislocation source which represents a creep dislocation source and (3) the model with a dike and a deflation source which represents a magma reservoir. Though all three models can match the horizontal displacements near the source area, model 1 fails to reproduce the regional displacements in the central part of Japan. Both models 2 and 3 can reproduce the regional displacement for horizontal components. Model 3 produces slightly better results than model 2 for vertical components. The balance in the volume budget for models 2 and 3 is also consistent with the observations. These results show that we cannot distinguish between the two models using only GPS observation. As there is no direct evidence for such a large creep or ductile source (corresponds to M7 or more) as proposed in model 2 and the active seismic region migrated back and forth within the linear swarm region, the model with a dike and a deep magma source is preferable. For the deflation point source, we obtained a deflation volume of 1.5 km3 at the depth of 20 km below the dike. An additional ~0.95 km3 of volume loss through caldera collapse and edifice deflation took place at Miyakejima. We conclude that the magma that intruded the dike came in part from below Miyakejima and in part from below the sea floor between Miyakejima and Kozushima, perhaps from reservoirs at the Moho.Editorial responsibility: S Nakada, T Druitt  相似文献   

13.
14.
An inverse method of modeling the regionalPL waveform with the predominant period of about 20 s was developed to estimate the averageS-velocity structure of the upper crust. Applicability of the waveform modeling was confirmed by the results of the numerical experiments: thePL waveform is most sensitive to theS velocity in the upper crust, whereas it is not affected significantly by errors involved in the focal mechanism solution and focal depth determination when thePL wave is well developed. The method was applied to the observed seismograms recorded in central Japan from the earthquakes with epicentral distances 300–500 km. As a result, distinct regional differences were found in the upper crustalS velocity; in particular, between the southern Shikoku district, west Japan, and the southern Chubu district, central Japan, and between the mountainous and the coastal areas in the southern Chubu district. These differences are in agreement with the general features ofP-velocity structures obtained by explosion experiments and by analyses of natural earthquakes. Our method is effective to the extent that the crustal structure along the propagation path can be assumed a horizontally layered structure; it is not applicable when the sensitivity of thePL waveform to the error in the focal mechanism solution is exceptionally high.  相似文献   

15.
Three stages of collapse and doming of the inner subsided block are recognized in the Miocene Kakeya cauldron. The mechanism of the first collapse is not clear, but the second and third are volcanic in origin. The second collapse was triggered by eruptions of silicic andesite lava flows and pyroclastic ejecta. The boundary fault between the subsided block and its surroundings is nearly vertical. The subsided block formed a distinct basin structure, and its marginal part was intensely deformed by faulting. The third collapse took place cylindrically, accompanied by voluminous eruptions of dacitic pyroclastic materials. The collapsed block formed a basin structure with a gently dipping marginal part. The doming of the inner subsided block was due to increase of pressure in a magma chamber.The structure formed by the second collapse is not consistent with the concept of the subterranean structure of either the so-called «Krakatau»- (funnel-shaped) type or Valles-type calderas. The second collapse is transitional between «Krakatau»- and Valles-type calderas or a new type of volcanic depression. The features of the third collapse and the resurgent doming are similar to those of Valles-type calderas, except for the size of cauldrons and composition of magmas related to collapse. The similarities indicate that the Kakeya cauldron was formed in an extensional tectonic setting similar to that for Valles-type calderas.  相似文献   

16.
Heavy rainfall on the south side of the Rokko Mountains has often caused severe landslides and debris flows. Analysis of the annual summation of rainfall in excess of 100 mm/day shows that the rainfall in this area has dominant periodicities of about 25–30, 10–13, and 5–7 years. The period of about 25–30 years corresponds to that of occurrence of the natural disasters produced by heavy rainfall; years when the maximum rainfall correspond to years when there have been severe landslides and debris flows in the area. Temporal change in this rainfall may provide a first approximation for erosional force. Analyses of tree ring width from these mountains indicate that the sequences have a dominant periodicity of about 25–30 years. Cross-spectral analyses for rainfall and ring width in this area show high coherency for the periods of about 25–30 years; evidence that variations in the ring width may be used as proxy data for erosional force.  相似文献   

17.
Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal-rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc–Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998) , however, suggests that the Tlc–Phn stability field defined by these reactions is unrealistically limited around 580–600 °C at 11.6–12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+-SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc–Phn assemblage.  相似文献   

18.
The 150-km-long Itoigawa-Shizuoka tectonic line active fault system (ISTL)in central Japan is one of the most active Quaternary fault systems inJapan. Estimated slip-rates on the fault system are as large as 10 m/ka, butthe historic seismicity has been low since 841 A.D. with no largeearthquakes recorded. The high slip rates contrast with the long time sincethe last major earthquake on the ITSL and indicates the high potential of a largeearthquake from the ISTL. Based on slip-rate estimates, more than 10 mof potential slip may have accumulated on the fault system since the 841A.D. earthquake. Recent paleoseismolgical studies on the middle andnorthern parts of the ISTL have determined that the average recurrenceinterval of surface-faulting earthquakes on the middle ISTL is 680 to 825years (Gofukuji fault) and 1258 to 1510 years in the northern ISTL. These data suggest the most recent event on both northern and middleISTL occurred in 841 A.D. The results highlight the high seismic potentialof the ISTL. Additional studies of the entire ISTL are needed to define theextent of the next rupture.  相似文献   

19.
The 2000 AD eruption of Miyakejima was characterized by a series of phreatomagmatic eruptions from the subsiding caldera. Six major eruptive events occurred, and they can be divided into the first and second periods separated by a 25-day hiatus. The phreatomagmatic eruptions produced a total of ~ 2 × 1010 kg of tephra, which mainly comprised fine-grained volcanic ash. The tephra layers could be divided into six fall units corresponding to the six major eruptive events.  相似文献   

20.
Abstract Prior work has defined a two-stage history for Yakuno ophiolite petrogenesis consisting of older oceanic basement, and younger island-arc rocks and subordinate elastic rocks. First-stage Yakuno rocks have transitional-type M orb or oceanic plateau affinities, and second-stage Yakuno rocks are more similar to immature island-arc settings. Zircon U-Pb isotopic dates of plagiogranite from the Asago district of Southwest Japan yield crystallization ages of 285 ± 2 Ma for the first-stage ophiolite component, and 282 ± 2 Ma for the second-stage component of the ophiolite. These results indicate that the two petrologi-cally distinct components of the Yakuno ophiolite in this area formed in a short time interval in the Early Permian. The zircon U-Pb crystallization ages provide a maximum age for the base of the stratigraphically overlying Maizuru Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号