首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

2.
A new dark energy model in anisotropic Bianchi type-III space-time with variable equation of state (EoS) parameter has been investigated in the present paper. To get the deterministic model, we consider that the expansion θ in the model is proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i}. The EoS parameter ω is found to be time dependent and its existing range for this model is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003) and SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004). It has been suggested that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Some physical aspects of dark energy model are also discussed.  相似文献   

3.
We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al. 2009a, 2009b) with new cosmological data obtained during last three years: updated measurements of cosmic microwave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass ??m ?? and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass ??m ?? ?? 0.4 eV and larger than standard effective number of neutrino species, N eff ?? 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameter constraints are presented. We show that taking in account systematic uncertanties, current cluster mass funstion data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.  相似文献   

4.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

5.
We have constructed a self-consistent system of Bianchi Type VI0 cosmology, and mingling of perfect fluid and dark energy in five dimensions. The usual equation of state \(p = \gamma \rho \) with \(\gamma \in [0, 1]\) is chosen by the perfect fluid. The dark energy assumed to be chosen is taken into consideration to be either the quintessence or Chaplygin gas. The same solutions pertaining to the corresponding the field equations of Einstein are obtained as a quadrature. State parameter’s equations for dark energy \(\omega \) is found to be consistent enough with the recent observations of SNe Ia data (SNe Ia data with CMBR anisotropy) and galaxy clustering statistics. Here our models predict that the rate of expansion of Universe would increase with passage of time. The cosmological constant \(\varLambda \) is traced as a declining function of time and it gets nearer to a small positive value later on which is supported by the results from the current supernovae Ia observations. Also a detail discussion is made on the physical and geometrical aspects of the models.  相似文献   

6.
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by  Δ m 15  ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.  相似文献   

7.
The single-degenerate (SD) channel for the progenitors of type Ia supernovae (SNe Ia) is one of the most popular channels, in which a carbon–oxygen white dwarf (CO WD) accretes hydrogen-rich material from its companion, increases its mass to the Chandrasekhar mass limit, and then explodes as a SN Ia. We show the initial and final parameter space for SNe Ia in a ( $\log P^{\mathrm{i}},M_{2}^{\mathrm{i}}$ ) plane and find that the positions of some famous recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951, are well explained by our model. The model can also explain the space velocity and mass of Tycho G, which is now suggested to be the companion star of Tycho’s supernova. Our study indicates that the SSS, V Sge, might be the potential progenitor of supernovae like SN 2002ic if the delayed dynamical-instability model due to Han and Podsiadlowski (Mon. Not. R. Astron. Soc. 368:1095, 2006) is appropriate. Following the work of Meng et al. (Mon. Not. R. Astron. Soc. 395:2103, 2009a), we found that the SD model (WD+MS) with an optically thick wind can explain the birth rate of supernovae like SN 2006X and reproduce the distribution of the color excess of SNe Ia. The model also predicts that at least 75% of all SNe Ia may show a polarization signal in their spectra.  相似文献   

8.
A self-consistent method has been evolved to infer physical parameters like density, radiation field and abundances using line and continuum radiations as diagnostics. For that purpose, we first calculate the temperatures of graphite and silicate grains using the model of Li and Draine (Astrophys. J. 554:778, 2001) by solving self-consistently the energy balance for G 0 (1–104) times the radiation field following Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001). Consequently, infrared emission fluxes are also obtained. To keep it simple, this is presented in the empirical form of parameters T D and wavelength. The same model of the grain is adopted for photoelectric heating of gas using the formalism of Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001) (hereafter referred to as WD) and Bakes and Tielens (Astrophys. J. 427:822, 1994) (hereafter referred to as BT) for radiation field cited above in the range (6<hν≤13.6 eV). Temperature and abundances are determined using our own code for PDR very similar to cloudy code. All the possible sources of heating and cooling are considered for setting up the thermal balance. For the gas phase abundances that vary with depth in the cloud due to dust, self- and mutual shielding, chemical balance is solved. Most of the photoionization, photodissociation or chemical reaction rates are taken from UMIST database. We present an analysis of the cooling lines of singly ionized carbon [CII] at 158 μm and neutral oxygen [OI], at 63 μm and far infrared (FIR) continuum for a variety of star forming galaxies. Method of analysis of observational data is different from that of Malhotra et al. (Astrophys. J. 561:766, 2001). The radiation field G 0, density N h and abundance of carbon are obtained through best fit of observed and calculated intensities for lines and continuum radiations.  相似文献   

9.
Type Ia Supernova (SN Ia) are a powerful, albeit not completely understood, tool for cosmology. Gaps in our understanding of their progenitors and detailed physics can lead to systematic errors in the cosmological distances they measure. We use UV data in two context to help further our understanding of SN Ia progenitors and physics. We analyze a set of nearly 700 light curves, and find no signature of the shock heating of a red giant companion, predicted by Kasen (Astrophys. J. 708:1025, 2010), casting doubt as to frequency of this SN Ia channel. We also use UV imaging of high redshift host galaxies of SN Ia to better understand the environments which SN Ia occur. We show that some high-z elliptical galaxies have current star formation, hindering efforts to use them as low-extinction environments. We show cosmological scatter of SN distances at large effective radii in their hosts is significantly reduced, and argue this is due to the smaller amounts of dust affecting the SN Ia. Finally, we find a two component dependence of SN distance measurements as a function of their host galaxy’s FUV-V color. This indicates that both the age and metallicity/mass of the host galaxy maybe important ingredients in measuring SN Ia distances.  相似文献   

10.
X. Meng  W. Yang  X. Geng 《New Astronomy》2010,15(4):343-345
The single-degenerate channel is widely accepted as the progenitors of type Ia supernovae (SNe Ia). Following the work of Meng et al. (2009a), we reproduced the birth rate and age of supernovae like SN 2006X by the single-degenerate model (WD + MS) with an optically thick wind, which may imply that the progenitor of SN 2006X is a WD + MS system.  相似文献   

11.
The distributions of supernovae of different types and subtypes along the radius and in z coordinate of galaxies have been studied. We show that among the type Ia supernovae (SNe Ia) in spiral galaxies, SNe Iax and Ia-norm have, respectively, the largest and smallest concentration to the center; the distributions of SNe Ia-91bg and Ia-91T are similar. A strong concentration of SNe Ib/c to the central regions has been confirmed. In spiral galaxies, the supernovae of all types strongly concentrate to the galactic plane; the slight differences in scale height correlate with the extent to which the classes of supernovae are associated with star formation.  相似文献   

12.
We present two dark energy (DE) models with an anisotropic fluid in Bianchi type-VI 0 space-time by considering time dependent deceleration parameter (DP). The equation of state (EoS) for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the EoS parameter for DE changes from ω>−1 to ω=−1 in first model whereas from ω>−1 to ω<−1 in second model which is consistent with recent observations. The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent type Ia supernovae observations. The cosmic jerk parameter in our derived models is also found to be in good agreement with the recent data of astrophysical observations. The physical and geometric aspects of both the models are also discussed in detail.  相似文献   

13.
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying  ∼1000 deg2  of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect  ≳100 000  SNe Ia up to   z ∼ 1  . This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.  相似文献   

14.
The Theory of Alfven drag (Drell et al. in J Geophys Res 70: 3131–3145 1965; Anselmo and Farinella in Icarus, 58, 182–185 1983) is applied here to show that the existence of a possible solar ring structure at a radial distance of 0.02 AU (~4R , R  = radius of the sun) predicted by earlier authors (Brecher et al. in Nature 282, 50–52 1979; Rawal in Bull. Astr. Soc. India 6, 92–95 1978, Moon Planets 24, 407–414 1981, Moon Planets 31, 175–182 1984, J Astrophys Astr 10, 257–259 1989) may not survive Alfven drag produced during even moderate solar magnetic storms which take place from time to time through the age of the sun, but a possible solar ring structure at a radial distance of 0.13 AU (~27R ) (Brecher et al. in Nature 282, 50–52 1979; Rawal in Bull. Astr. Soc. India 6, 92–95 1978, Moon Planets 24, 407–414 1981, Moon Planets 31, 175–182 1984, J Astrophys Astr 10, 257–259 1989) may survive intense Alfven drag produced during even strong magnetic storms of magnetic field value up to 1,000 G.  相似文献   

15.
Recent studies of NOAA active region 10953, by Okamoto et al. (Astrophys. J. Lett. 673, 215, 2008; Astrophys. J. 697, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood (Astrophys. J. Lett. 716, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto et al. (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.  相似文献   

16.
The Nearby Supernova Factory is an international project dedicated to the study of the nearby thermonuclear (type Ia) supernovæ. Based upon the NEAT search for the target discovery and the dedicated integral field spectrograph SNIFS for the follow‐up, the goal is to study, over a continuous period of 4 years, the spectro‐photometric evolution of ∼300 SNe Ia at z < 0.08 from −15 to +50 days in the extended optical range (320–1000 nm). This will allow to probe in detail the local Hubble diagram, SNe Ia physics and the SNe‐host galaxy correlations, serving as an unprecedented nearby benchmark for the high‐z cosmological studies to come. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Systematically studying all the RXTE/PCA observations for GRS 1915+105 before November 2010, we have discovered three additional patterns in the relation between Quasi-Periodic Oscillation (QPO) frequency and photon energy, extending earlier outcomes reported by Qu et al. (Astrophys. J. 710:836, 2010). We have confirmed that as QPO frequency increases, the relation evolves from the negative correlation to positive one. The newly discovered patterns provide new constraints on the QPO models.  相似文献   

18.
The population synthesis method is used to study the possibility of explaining the appreciable fraction of the intergalactic type-Ia supernovae (SN Ia), 20 −15 +12 %, observed in galaxy clusters (Gal-Yam et al. 2003) when close white dwarf binaries merge in the cores of globular clusters. In a typical globular cluster, the number of merging double white dwarfs does not exceed ∼10−13 per year per average cluster star in the entire evolution time of the cluster, which is a factor of ∼3 higher than that in a Milky-Way-type spiral galaxy. From 5 to 30% of the merging white dwarfs are dynamically expelled from the cluster with barycenter velocities up to 150 km s−1. SN Ia explosions during the mergers of double white dwarfs in dense star clusters may account for ∼1% of the total rate of thermonuclear supernovae in the central parts of galaxy clusters if the baryon mass fraction in such star clusters is ∼0.3%.  相似文献   

19.
The Local Group galaxies enable us to study the impact of metallicity on the structure and evolution of massive stars through spectroscopic analyses. However, color-based target selection for spectroscopy (in absence of known spectral types), though relatively successful, usually produces lists dominated by B-type modest-mass stars. We have developed a friends of friends code to find OB associations in Local Group galaxies (Garcia et al. in Astron. Astrophys. 502:1015, 2009; Bull. Soc. R. Sci. Liege 80:381, 2011a). The interpretation of the association’s color-magnitude diagrams (CMDs) and the automatic determination of evolutionary masses for the members, allow a more insightful choice of candidates for spectroscopy and to spot out potential advanced evolutionary stages (Garcia et al. in Astron. Astrophys. 523:A23, 2010). We show our results on the dwarf irregular IC 1613 as illustration of the potential of the method.  相似文献   

20.
We propose a method to remove the mass-sheet degeneracy that arises when the mass of galaxy clusters is inferred from gravitational shear. The method utilizes high-redshift standard candles that undergo weak lensing. Natural candidates for such standard candles are type Ia supernovae (SNe Ia).
When corrected with the light-curve shape (LCS), the peak magnitude of SNe Ia provides a standard candle with an uncertainty in apparent magnitude of Δ m ≃0.1–0.2. Gravitational magnification of a background SN Ia by an intervening cluster would cause a mismatch between the observed SN Ia peak magnitude compared with that expected from its LCS and redshift. The average detection rate for SNe Ia with a significant mismatch of ≥2Δ m behind a cluster at z ≃0.05–0.15 is about 1–2 supernovae per cluster per year at J , I , R ≲25–26.
Since SNe are point-like sources for a limited period, they can experience significant microlensing by massive compact halo objects (MACHOs) in the intracluster medium. Microlensing events caused by MACHOs of ∼10−4 M⊙ are expected to have time-scales similar to that of the SN light curve. Both the magnification curve by a MACHO and the light curve of a SN Ia have characteristic shapes that allow us to separate them. Microlensing events caused by MACHOs of smaller mass can unambiguously be identified in the SN light curve if the latter is continuously monitored. The average number of identifiable microlensing events per nearby cluster ( z ≲0.05) per year is ∼0.02 ( f /0.01), where f is the fraction of the cluster mass in MACHOs of masses 10−7< M macho/M⊙<10−4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号