首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gurpi section in western Shiraz, faulted Zagros range of southwestern Iran, contains one of the most complete Early Santonian to Late Maastrichtian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The Gurpi Formation is mainly made up of grey shale. As a result of this study, 23 genera and 47 species of nannofossils have been identified for the first time. This confirms the existence of biozones CC14–CC26, which suggests the age of Early Santonian to Late Maastrichtian. All Early Santonian to Late Maastrichtian calcareous nannofossil biozones from CC14 (equivalent to the Micula decussate Zone) to CC26 (equivalent to the Nephrolithus frequens Zone) are discussed. Additionally, the zonal subdivision of this section based on calcareous nannofossils, is correlated with planktonic foraminiferal zones (Dicarinella asymetrica Zone to Abathomphalus mayaroensis Zone). We can also learn about the predominant conditions of the studied sedimentary basin that was in fact a part of the Neotethys basin with the existence of index species of calcareous nannofossils indicating a warm climate and high depths of the basin in low latitudes.  相似文献   

2.
The Lower Cretaceous sediments of the Ceahl?u Nappe (from the bend region of the Romanian Carpathians) were investigated from lithological and micropaleontological (calcareous nannoplankton) points of view. Our investigations revealed that the studied deposits were sedimented within the latest Tithonian-Albian interval. The calcareous nannofossil assemblages of the turbidite calcareous successions (the Sinaia Formation) were assigned to the NJK-?NC5 calcareous nannofossil zones, which cover the Late Tithonian-Early Barremian interval. The sandy-shaly turbidites, which followed the calcareous turbidites of the Sinaia Formation, are Early Barremian-Early Albian in age (interval covered by the ?NC5-NC8 calcareous nannofossil zones). Because the studied deposited are mainly turbidites, many reworked nannofossils from older deposits are present in the calcareous nannofloras. Thus, some biozones (i.e., NC5), defined based on the last occurrences of nannofossils, could not be identified. The calcareous nannofossil assemblages are composed of Tethyan taxa (which dominate the nannofloras) and cosmopolitan taxa. During two intervals (the Late Valanginian and across the Barremian/Aptian boundary), Tethyan and cosmopolitan nannofossils, together with Boreal ones, were observed. This type of mixed calcareous nannoplankton assemblage is indicative for sea-level high-stand, which allows the nannofloral exchange between the Tethyan and Boreal realms, within the two-above mentioned intervals.  相似文献   

3.
For the first time, the calcareous nannofossils of the chalky limestone of upper Abderaz Formation and lower part of Abtalkh Formation have been studied. In this study, 83 nannoplanktonic species of 45 genera were identified and presented. A biostratigraphic study of calcareous nannofossils from this section has allowed the recognition of five calcareous nannofossil biozones of Sissingh (Geol Mijnbouw 56:37–65, 1977) CC17–CC21. On the obtained calcareous nannofossils, the age of this section is Late Santonian/Early Campanian–Early Late Campanian.  相似文献   

4.
松辽盆地作为中国最大的陆相含油气盆地,是否发生过海水侵入一直存在争议,化石能为该科学问题提供直接解释。在松科1井嫩江组一、二段发现了少量的钙质超微化石,初步鉴定出Calculites obscurus,Calculites ovalis,Quadrum sp.,Micula sp.等属种。上述钙质超微化石广泛分布于晚白垩世海相地层中,通过与国际标准海相化石的对比,将嫩江组一段中、下部的时代限定为Turonian晚期—Maastrichtian期。松辽盆地嫩江组一、二段下部的钙质超微化石保存总体一般,有一定的多样性,具有海相钙质超微化石的特征。松科1井钙质超微化石的分布、古生态及其与有孔虫化石的对应关系表明,松辽盆地嫩江组一段中-下部、二段下部沉积期湖泊水域广阔,全球海平面较高,间歇性的海水侵入事件导致西北太平洋中的钙质超微浮游生物和有孔虫等海洋生物被带入松辽盆地。  相似文献   

5.
A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age.The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous,late Paleocene,(early,middle,late) Eocene,middle Miocene,late Pliocene,and Pleistocene.Gas chromatography(GC) and gas chromatography-mass spectrometry(GC-MS) were used to test the Co-rich crusts,and a variety of molecular fossils were detected,such as chloroform bituminous "A",n-alkane,isoprenoid and sterol.Peak carbon and molecular indices(such as ΣC23 /ΣC24 +,CPI,Pr/Ph,Pr/nC17,Ph/nC18 and δ13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter.Researches on calcareous nannofossils,molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene(P/E) global event is recorded in the cobaltrich crusts from the northwestern Pacific Ocean.A succession of biomes can be observed near the 85 mm boundary(about 55 Ma),i.e.,the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis,and Broisonia parka microbiotas above the P/E boundary,and the bloom of Coccolithus formosus,Discoaster multiradiatus,Discoaster mohleri and Discoaster sp.below the boundary.Typical parameters of molecular fossils,such as saturated hydrocarbon components and carbon-number maxima,Pr/Ph,Pr/C17,Ph/C18,distribution types of sterols,Ts/Tm ratios and bacterial hopane,also exhibit dramatic changes near the P/E boundary.These integrated results illustrate that the biome succession of calcareous nannofossils,relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.  相似文献   

6.
The Pol Dokhtar section of southern Lorestan, faulted Zagros range of southwestern Iran, contains one of the most complete Early Campanian to Danian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The majority of the section is made of shale, marl, and partly of marly limestone and clay limestone, respectively. As a result of this study, 24 genera and 45 species of nannofossils have been identified and presented for the first time. This confirms the existence of biozone CC18 of zonation scheme of Sissingh (Geologie en Minjbouw 56:37–65, 1977) to NP1 of zonation of Martini, which suggests the age of Early Campanian to Danian. All Early Campanian to Danian calcareous nannofossil biozones from CC18 (equivalent to the Aspidolithus parcus zone) to NP1 (equivalent to the Markalius inversus zone) are discussed. Also, the zonal subdivision of this section based on calcareous nannofossils has shown continuity in Cretaceous/Paleocene boundary in south part of Lorestan Province. We can also learn about the predominant conditions of the studied sedimentary basin that was in fact part of the Neotethys basin with the existence of indexed species calcareous nannofossils that indicate warm climate and high water depths of the basin in low latitudes.  相似文献   

7.
吕庆田  管志宁 《现代地质》1997,11(3):268-268,321
青藏高原中部岩石圈结构及地球动力学的天然地震学研究研究生吕庆田导师管志宁(应用地球物理系北京100083)青藏高原的隆升和地壳缩短被普遍认为是印度板块和欧亚板块碰撞的结果,然而对隆升和地壳缩短的机制和动力学过程仍不清楚。已提出的动力学模式可分为3类:...  相似文献   

8.
For the first time, the calcareous nannofossils of marly deposits near Kerman (Bardsir area) have been studied. This study presents the integrated (calcareous nannofossils) biostratigraphy of the Bardsir section in the Kerman basin, Central Iran. In most parts of Central Iran, the Upper Cretaceous sequence is complete and continuous and is divided into two groups: Cenomanian–Touronian flysch and Campanian–Maastrichtian flysch. Flyschs composed of sets of green marl sequences (Coniacian–Santonian) have been separated to reduce the basin depth and refer to the relative calm. Bardsir is located 57.6 km from Kerman (Central Iran). The lithology of this area includes light green marl with layers of calcareous siltstone, limestone, and flysch rocks. In this study, 24 samples were taken and prepared with smear slide. Most species were photographed with a light microscope. As a result of this study, 30 genera and 42 species of nannofossils have been identified. A high-resolution calcareous nannofossil biostratigraphic study has been carried out, allowing the division of the studied section into eight biozones of Late Santonian to Early Maastrichtian age (CC17–CC24).  相似文献   

9.
Two cored boreholes in the central part of the North West German Basin recovered a unique section of Upper Barremian to Lower Aptian strata. Calcareous nannofossils show a distinctive shift from boreal endemic assemblages in the Barremian to cosmopolitan ones in the Aptian. This onset of new cosmopolitan species (e.g., Chiastozygus litterarius, Flabellites oblongus, Rhagodiscus angustus, Braarudosphaera sp., Eprolithus sp.) is spread over an interval of 25m, starting well below the early Aptian "Fischschiefer", a dark laminated shale rich in organic matter. These changes in the composition of calcareous nannofossils indicate that major palaeoceanographic changes occurred before the deposition of the Fischschiefer.The distribution pattern of calcispheres allows the differentiation of two sedimentary successions, separated by the Fischschiefer. The lower succession, which includes the sediments below the base of the Fischschiefer, indicates a boreal-pelagic environment. The lower part of the upper successions which includes the Fischschiefer, represents warmer inner shelf conditions. This corresponds to the presence of rich Tethyan-derived nannoconid assemblages and the presence of the planktonic foraminifera Hedbergella in the Fischschiefer. The topmost part of the upper succession (middle Aptian, Hedbergella marl) suggests a change to a pelagic warmer water environment. Two new taxa are introduced: the calcareous dinoflagellate cyst Obliquipithonella laqueata n. sp. and the foraminiferan Choanaella fortunate n. gen. n. sp.  相似文献   

10.
We report the first record of Bathonian–Callovian calcareous nannofossils from a marine sedimentary sequence of the eastern Karakoram block, in northern India. The calcareous mudstones and packstones, occasionally bearing red chert nodules, yielded calcareous nanofossils and Middle Jurassic Choffatia furcula ammonoids. Middle to Upper Jurassic nannofossil assemblage is dominated by representatives of the genus Watznaueria. The occurrence of Ansulasphaera helvetica whose range is Upper Bathonian–Upper Callovian, indicates a correlation with nannofossil zones NJ12–13. The occurrence of Cyclagelosphaera wiedmannii further infer an Upper Bathonian–Callovian age. These specimens show affinities with those found in a similar sedimentary formation exposed in north Karakoram. This suggests the existence of a narrow and elongated sedimentary basin, oriented in a NW–SE direction, at a latitude of c. 25°–30°N. At that time, the Karakoram block was situated near the already welded Qiangtang block of Asia. The northern and eastern Karakoram blocks were connected during Middle Jurassic. The activity and dextral offset of the Karakoram fault separated the Jurassic sedimentary formations of the northern and eastern Karakoram blocks by c. 150 km.  相似文献   

11.
A high-resolution micropalaeontological study, combined with geochemical and sedimentological analyses was performed on the Tiefengraben, Schlossgraben and Eiberg sections (Austrian Alps) in order to characterize sea-surface carbonate production during the end-Triassic crisis. At the end-Rhaetian, the dominant calcareous nannofossil Prinsiosphaera triassica shows a decrease in abundance and size and this is correlated with a increase in δ18O and a gradual decline in δ13Ccarb values. Simultaneously, benthic foraminiferal assemblages show a decrease in diversity and abundance of calcareous taxa and a dominance of infaunal agglutinated taxa. The smaller size of calcareous nannofossils disturbed the vertical export balance of the biological carbon pump towards the sea-bottom, resulting in changes in feeding strategies within the benthic foraminiferal assemblages from deposit feeders to detritus feeders and bacterial scavengers. These micropalaeontological data combined with geochemical proxies suggest that changes in seawater chemistry and/or cooling episodes might have occurred in the latest Triassic, leading to a marked decrease of carbonate production. This in turn culminated in the quasi-absence of calcareous nannofossils and benthic foraminifers in the latest Triassic. The aftermath (latest Triassic earliest Jurassic) was characterised by abundance peaks of “disaster” epifaunal agglutinated foraminifera Trochammina on the sea-floor. Central Atlantic Magmatic Province (CAMP) paroxysmal activity, superimposed on a major worldwide regressive phase, is assumed to be responsible for a deterioration in marine palaeoenvironments. CAMP sulfuric emissions might have been the trigger for cooling episodes and seawater acidification leading to disturbance of the surface carbonate production at the very end-Triassic.  相似文献   

12.
The Jurassic/Cretaceous boundary interval in the northern hemisphere is characterized by the widespread occurrence of black shales. About 60% of all petroleum source rocks comprise sediments of late Jurassic and early Cretaceous age with the origin of such black shales still under discussion. In order to better understand the factors that controlled black shale sedimentation, 78 samples were analyzed for calcareous nannofossils from two sections (Gorodische, Kashpir) of the Volga Basin (NE Russia). Calcareous nannofossils are ideal proxies for deciphering nutrient, temperature and salinity fluctuations. Additionally 58 samples from both sections were also analyzed for clay mineralogy, 13Corg , TOC and CaCO3 composition. Both sections contain calcareous claystones and intercalated organic rich shales overlain by phosphorite beds. The presence of the calcareous nannofossil species Stephanolithion atmetros throughout both successions allows a biostratigraphic assignment to the S. atmetros Nannofossil Biozone (NJ 17), which corresponds to the Dorsoplanites panderi Ammonite Biozone of the Middle Volgian. The marlstones of the Kashpir section yield a well-preserved rich and diverse nannoflora, whereas all black shale beds are essentially barren of calcareous nannofossils. Only the uppermost black shale layers yield an impoverished assemblage of low diversity and abundance. Geochemical data suggest an early diagenetic nannofossil dissolution in the black shales of the Kashpir section. This is supported by the occurrence of coccoliths in black shale horizons of the Gorodische section. The assemblages in both sections are dominated by coccoliths of the Watznaueriaceae group (Watznaueria barnesae, Watznaueria fossacincta, Watznaueria britannica, Watznaueria communis), Biscutum constans and Zeugrhabdotus erectus. In Kashpir rare specimens of Crucibiscutum salebrosum occur in the higher part of the section. These taxa indicate boreal affinities. B. constans and Z. erectus are considered to be taxa indicative of a higher productive environment, while C. salebrosum is a cool-water species. From base to top of the Kashpir section, consecutive mass occurrences of different taxa/groups were observed: W. barnesae–W. fossacincta acme, W. britannica–W. communis acme, Z. erectus acme, B. constans acme (including sparse occurrences of C. salebrosum).The observed distribution patterns have been interpreted as characterizing a transition from a low productive, oligotrophic setting with high abundances of K-selected cosmopolitan species (Watznaueriaceae) and predominating marlstone sedimentation to a higher productive, mesotrophic setting. Cooler water temperatures marked by r-selection and acmes of opportunistic species (Z. erectus, B. constans) are coincident with the deposition of black shales and phosphorites in the higher part of the section. Interpretation of clay mineral distribution indicates that black shale deposition occurred under semi-arid hinterland climatic conditions concomitant with a sea level rise. This induced dysoxic conditions in the deeper parts of the Volga Basin, favoring the preservation of organic matter. The cause of the nutrient enrichment in the surface water is still unclear, but possible river water input from the continents does not seem to have been the controlling factor under a semi-arid climate. The occurrence of phosphorites in the upper part of both sections presumably indicates that enhanced productivity may be better explained by the upwelling of nutrient-rich bottom water and thereby causing the recycling of nutrients from oxidized phytoplankton back into the photic zone. This recycling effect finally may have led to an intensified phytoplankton growth which seemed to be a sufficient source for the enrichment of organic matter. This is well correlated with the increase in black shale horizons in the upper part of the Kashpir section.  相似文献   

13.
徐钰林  孙镇城 《现代地质》1998,12(1):49-55,T002
报导了中国西北地区的甘肃、青海、新疆等地陆相第四纪盐湖沉积中发现的钙质超微化石,它们主要是:Gephyrocapsaoceanica,Cocolithuspelagicus,Calcidiscusleptoporus,C.macintyrei,Reticulofenestraminutula等。上述钙质超微化石群具有以下特征:(1)化石丰度中等,属、种分异度低,化石保存差;(2)赋存化石的层位均为富含石膏盐层的微咸水咸水的沉积物,或为盐湖沉积;(3)产出化石地点远距该地质时期时的古海岸线。它们与古海域既无通道相连,亦非残留海。中国西北地区盐湖沉积中钙质超微化石的发现说明了中国东部地区第三纪沙河街组某些层位中的钙质超微化石不能作为“海相生物”的标志,否定了这些化石层位与“海侵”或“海泛”的关联。  相似文献   

14.
The late Turonian to early Campanian calcareous nannofossil biostratigraphy of the Austrian Gosau Group is correlated with ammonite and planktonic foraminiferal zones. The standard Tethyan zonations for nannofossils and planktonic foraminifers are applied with only minor modifications. The basal marine sediments of the Gosau Group, bearing late Turonian-early Coniacian macrofossils, belong to the Marthasterites furcatus nannofossil Zone (CC13). The Micula decussata Zone (middle Coniacian to early Santonian) is combined with the Reinhardtites anthophorus Zone because of the rare occurrence of Renhardtites cf. R. anthophorus already in the Coniacian and taxonomic problems concerning the correct identification of this species. The Santonian-Campanian boundary lies within the Calculites obscures Zone (CCl7).  相似文献   

15.
杨铁汾  赵江天 《地球科学》1994,19(4):421-426,T001
在甘肃合作地区早三叠世地层中发现了钙质超微化石,共属3种,共文描述了2个新属3个新种。它们位于斜坡脚-盆地的深海沉积环境中,与早三叠世早期双壳类Claraia共生,其下部有具早三叠世面貌的孢粉组合。经能谱成成分分析,这些化石为钙质。这些钙质微化石的发现使钙质超微化石的时代分布的可靠记录延至早三叠世。为今后中生代地层的划分对比及钙质超微化石的演化研究提供了较好的资料。文中依据所发现的钙质超微化石对沉  相似文献   

16.
A biostratigraphical and palaeoecological survey employing calcareous nannofossils and planktonic and benthonic foraminifera has been carried out in four sections of hemipelagic marls and chalks of the Late Maastrichtian Abathomphalus mayaroensis Zone of eastern Sinai, in order to evaluate the mechanisms controlling the composition of the well preserved microfauna and nannoflora.The Abathomphalus mayaroensis Zone in eastern Sinai can be easily identified by the wide occurrence of the index fossil A. mayaroensis and can be further subdivided by the first occurrences of Plummerita reicheli (ex. P. hantkeninoides) and Micula prinsii. Microfossil abundances and lithologies are characterised by pronounced repetitive distribution patterns. These include low and high frequency fluctuations of the planktonic/benthonic (P/B) foraminiferal ratio, repetitive changes in the abundance of calcareous nannofossils and benthonic foraminifera, as well as the development of chalk-marl couplets and thinning upward chalk packets. both microfossil distribution patterns and the occurrence of rhythmites are attributed to changes in primary palaeoproductivity. Semiquantitative investigations of calcareous nannofossils and a few selected benthonic foraminifera yield evidence of the presence of high (HP) and low (LP) productivity assemblages.The interpreted HP assemblage is dominated by Glaukolithus diplogrammus, Manvitella pemmatoidea, Microrhabdulus decoratus and Micula murus and the benthonic foraminifera Neoflabellina jarvisi; the LP assemblage is characterised by Lithraphidites quadratus and Bolivinoides draco. However, further quantitative studies are necessary to reconstruct the exact composition of these assemblages and to explain deviatory developments. The chalk-marl couplets, thinning-upward chalk packets and the high frequency P/B patterns are interpreted to reflect productivity changes related to orbital forcing. These hemipelagites were deposited during the latest phase of the southern Tethyan upwelling system, which was active from the Santonian to the Late Maastrichtian with a peak in the Campanian. Termination of upwelling just before the K/T boundary also provides a good explanation for the change towards a palaeobathymetric control on foraminiferal distribution, as observed for the Palaeocene of central east Sinai.  相似文献   

17.
Calcareous foraminifers representing 9 species and 5 genera were investigated in two Famennian sections located in the south‐western part of the Holy Cross Mountains (HCM), central Poland. They constitute redeposited material that, together with crinoids and calcareous algae, comprise the dominant component of limestone turbidite beds intercalated with deep‐marine marly sediments. The calcareous material was redeposited from an unknown carbonate platform located probably to the south of the HCM area. The first appearance data of foraminifers, mainly from the quasiendothyrid group, correlated to the Standard Conodont Zonation, indicate a diachronous appearance of the same species in different parts of Europe due to a migration delay from the foraminiferal evolutionary centre located in the south‐eastern shelves of Laurussia in the neighbouring areas. As a result, the Moravian foraminiferal zonation, where index taxa appeared in similar stratigraphic intervals, was chosen as the most applicable to the stratigraphy in the central Polish area. The Quasiendothyra communis–Eonodosaria evlanensis Interzone, the Quasiendothyra communis–Quasiendothyra regularis Zone and Quasiendothyra kobeitusana–Quasiendothyra konensis Zone were distinguished, respectively, in the HCM sections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The marine Tertiary sequence in the north part of the South China Sea may be divided into 18 LateOligocene to Pliocene calcareous nannofossil zones and one unnamed Eocene assemblage based on an analysisof calcareous nannofossils from 40 offshore boreholes. The unnamed Eocene assemblage has been found onlyon the northeast margin of the Zhujiangkou basin. The 18 cakareous nannofossil zones of the Late Oligoceneto Pliocene were deposited in succession, but their development degrees are different. Among the 18 calcareousnannofossil zones, those corresponding to Martini's (1971) NN4- NN5 zones, NN11 zone and NN13-NN15zones are well developed, relatively persistent laterally and also widely distributed. They are the importantmarkers for the stratigraphical subdivision and correlation of the Upper Tertiary between the various basins inthe north part of the South China Sea. Based on the calcareous nannofossils and the sedimentsry features coup-led with the foraminifer zonation in certain basins, the present paper discusses the sedimentary characteristicsof the marine Tertiary and as well as the distribution and development of the sedimentary hiatus in the region.The calcareous nannofossil markers for the Upper / Lower Tertiary and the Quaternary / Tertiary boundaries,and the characteristics and geological significance of the reworked calcareous nannofossils are also discussed inthe paper.  相似文献   

19.
The first data on the distribution of calcareous nannofossils in the Behbehan section, the Kuh-e-Rish, are considered. According to the distribution of nannofossils, the Upper Cretaceous deposits of the section are subdivided into nine biostratigraphic zones. CC17 (Calculites obscurus zone) indicate the Late Santonian. Biozones CC18 (Aspidolithus parcus zone), CC19 (Calculites ovalis zone), CC20 (Ceratolithoides aculeus zone), CC21 (Quadrum sissinghii zone), and CC22 (Quadrum trifidum zone) represent the Campanian. Biozone CC23 (Tranolithus phacelosus zone) indicate the Late Campanian–Early Maastrichtian. Biozones CC24 (Reinhardtites levis zone) and CC25 (Arkhangelskiella cymbiformis zone) suggest the Middle and Late Maastrichtian, respectively. In the late Late Maastrichtian, due to decreasing in water depth at the study area, Nephrolithus frequens zone (CC26) defined in Tethysian domain was not recognized. The boundary between Gurpi–Pabdeh Formations represented a non-depositional period from the late Late Maastrichtian to the end of Early Paleocene. Also, it seems that predominant conditions of the sedimentary environment of Neotethys basin with the presence of index species calcareous nannofossils specified, which itself indicates that the warm climate and high depth of the basin in Late Santonian to Late Maastrichtian, in low latitudes has been prevalent.  相似文献   

20.
Lower Cretaceous sediments of the northwestern part of the Kopet Dagh sedimentary basin have been sampled with the purpose to study stratigraphic distribution of calcareous nannofossils. A total of 87 samples from the 1900-m-thick marly limestones, shales and siltstones of the Sarcheshmeh and Sanganeh Formations (late Barremian-early Aptian) displayed diverse nannofossil assemblages. Representative species of the following genera were recorded from the Sarcheshmeh Fm.: Braarudosphaera, Calcicalathina, Calciosolenia, Chiastozygus, Conusphaera, Cretarhabdus, Cyclagelosphaera, Eprolithus, Haqius, Hayesites, Lithraphidites, Manivitella, Micrantholithus, Nannoconus, Radiolithus, Retecapsa, Rhagodiscus, Rucinolithus, Watznaueria, and Zeugrhabdotus. In the Sanganeh Formation, Biscutum, Broinsonia, Cribrosphaerella, Crucicribrum, Cyclagellosphaera, Diazomatolithus, Discorhabdus, Eiffellithus, Lithraphidites, Nannoconus, Prediscosphaera, Rhagodiscus, Tranolithus, and Watznaueria were found. The identified nannofossil assemblages enabled the recognition of NC5-NC7A zones in the studied part of the section. Paleoecologically, these nannofossil assemblages are typical for the Lower Cretaceous of the Tethyan realm and indicate warm surface water conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号