首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inorganic chemical composition (major ions and trace metals) of bulk deposition samples collected monthly with bulk collectors at seven Atlantic Coastal European cities (Galicia, Northwest of Spain) during wet season (September 2011 to March 2012) has been assessed and compared. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in soluble fraction and non-soluble fraction (after acid extraction) of the bulk deposition by inductively coupled plasma-mass spectrometry. Major inorganic ions (Cl?, NO3 ?, SO4 2?, Na+, K+, Ca2+, Mg2+ and NH4 +) were analysed in the soluble fraction of the bulk deposition by capillary zone electrophoresis. Univariate analysis (ANOVA and Multiple Range Test) according to the location of each sampling site was performed. Results also suggest a great influence of cleaner Atlantic air masses. After partition coefficients and enrichment factor estimation, similar sources could be assigned for the ionic and metal composition of bulk deposition at seven urban sites.  相似文献   

2.
Outdoor smog chamber experiments were performed to investigate gas/particle (G/P) partitioning behavior of aldehyde compounds in atmospheric acidic aerosols. Diesel soot and wood smoke aerosols were selected as acidic aerosols and octanal, decanal, undecanal, and cis-pinonaldehyde for aldehydes compounds. Aerosol acidity was measured with the equivalent sulfuric acid amounts in aerosol mass: 0.2–0.6 wt% in diesel soot and 0.04–0.1 wt% in wood smoke aerosols. Experimentally determined partitioning coefficients of aldehyde along with other classes of semivolatile organic compounds (SOCs) were compared with the estimation. All experimental G/P partitioning coefficients of aldehyde compounds were 10–200 times higher than estimated partitioning coefficients. Aldehyde partitioning coefficients in wood soot were similar or less than diesel soot aerosols.  相似文献   

3.
This paper reports aerosol chemical properties for the first time over a Korean Global Atmosphere Watch (GAW) supersite, Anmyeon (36°32′N; 126° 19′E), during 2003–2004 period. Total suspended Particulates (TSP) showed significant seasonal variation with consistent higher mass concentrations during spring season (average of up to 230?±?190 μg/m3). PM10 also followed similar trend with higher concentrations during spring (average of up to 170?±?130 μg/m3) and showed reduced concentrations during summer. PM2.5 showed a significant increase during summer (average of up to 60?±?25 μg/m3), which could be due to the influx of fine mode sea salt aerosols associated with the Changma front (summer monsoon). Chemical composition analysis showed enhanced presence of acidic fractions, majorly contributed by sulphates (SO 4 2- ) and nitrates (NO 3 - ) in TSP, PM10 and PM2.5 during different seasons. Enhanced presence of Calcium (Ca2+) was observed during sand storm days during spring. The high correlation obtained on matrix analysis between crustal ions and acidic ions suggests that the ionic compositions over the site are mainly contributed by terrestrial sources of similar origin. The neutralization factors has been estimated to find the extend of neutralization of acidicity by main basic components, and found to have higher value for Ammonium (up to 1.1) in different seasons, indicating significant neutralization of acidic components over the region by NH 4 + . Back trajectory analysis has been performed during different seasons to constrain the possible sources of aerosol origin and the results are discussed in detail.  相似文献   

4.
Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m,p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269–276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L (n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L (n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 102 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and particulate form) normalized by total inorganic ion concentration in dew water. Our results indicate that total HULIS in dew water could enhance the dissolution of atmospheric VOCs into dew droplets.  相似文献   

5.
Measurements show that 20–60% of the carbon mass present in fine atmospheric particulate matter consists of water soluble organic compounds (WSOC). However, only 5–20% of this WSOC has been identified, mainly as dicarboxylic acids. Because of their high solubility in water, multifunctional secondary compounds derived from the gas-phase oxidation of volatile organic compounds (VOC) are suspected to be key contributors to the WSOC. To test this assumption, an estimate of aqueous uptake of secondary VOC was included in a highly detailed gas-phase mechanism which treats explicitly the formation of the secondary VOC from a set of representative primary species. Simulations were conducted for 2 scenarios, representing typical rural and urban areas. It was observed that the uptake of secondary VOC can lead to WSOC mass concentrations in the range of a few C m–3, in fairly good agreement with typical WSOC mass concentrations measured. Speciation of WSOC was found to be mainly as tri- or higher multifunctional hydroxy-carbonyl species and hydroxy-hydroperoxide-carbonyl species, in urban and rural environments, respectively. However, it was also found that taking into account only the absorption of secondary VOC does not bring the carboxylic acids mass concentration in agreement with measurements. An attempt was made to explain this discrepancy by introducing chemistry occurring within deliquescent aerosols.  相似文献   

6.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

7.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

8.

In this study we present the seasonal chemical characteristics and potential sources of PM10 at an urban location of Delhi, India during 2010?2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM10 were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM10 was computed as 227?±?97 µg m?3 with a range of 34?734 µg m?3. The total carbonaceous aerosols in PM10 was accounted for 22.5% of PM10 mass concentration, whereas elements contribution to PM10 was estimated to be 17% of PM10. The statistical analysis of OC vs. EC and OC vs. WSOC of PM10 reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM10 indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning?+?fossil fuel combustion (BB?+?FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM10 in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.

  相似文献   

9.
Secondary aerosol formation was studied at Allahabad in the Indo-Gangetic region during a field campaign called Land Campaign-II in December 2004 (northern winter). Regional source locations of the ionic species in PM10 were identified by using Potential Source Contribution Function (PSCF analysis). On an average, the concentration of water soluble inorganic ions (sum of anions and cations) was 63.2 μgm−3. Amongst the water soluble ions, average NO3 concentration was the highest (25.0 μgm−3) followed by SO42− (15.8 μgm−3) and NH4+ (13.8 μgm−3) concentrations. These species, contributed 87% of the total mass of water soluble species, indicating that most of the water soluble PM10 was composed of NH4NO3 and (NH4)2SO4/NH4HSO4 or (NH4)3H(SO4)2 particles. Further, the concentrations of SO42−, NO3, and NH4+ aerosols increased at high relative humidity levels up to the deliquescence point (∼63% RH) for salts of these species suggesting that high humidity levels favor the conversion and partitioning of gaseous SO2, NOx, and NH3 to their aerosol phase. Additionally, lowering of ambient temperature as the winter progressed also resulted in an increase of NO3 and NH4+ concentrations, probably due to the semi volatile nature of ammonium nitrate. PSCF analysis identified regions along the Indo-Gangetic Plain (IGP) including Northern and Central Uttar Pradesh, Punjab, Haryana, Northern Pakistan, and parts of Rajasthan as source regions of airborne nitrate. Similar source regions, along with Northeastern Madhya Pradesh were identified for sulfate.  相似文献   

10.
The present paper reports chemistry and fluxes of dust-carbon mixed coarse particles. For the purpose of this study, different carbonaceous fractions i.e. organic carbon ((OC), elemental carbon (EC) and carbonate carbon (CC) of atmospheric dust and their respective local soils were quantified at three sites of National Capital Region (NCR) of Delhi viz. Jawaharlal Nehru University campus (JNU), Connaught Place (CP) and Vishali area of Ghaziabad (GB). It has been observed that the OC and EC levels were approximately five to nine times higher in urban atmospheric dust than their corresponding soils, whereas CC levels were about three times higher than the corresponding soils. Average dustfall fluxes were significantly different at all the sites due to their different land-use patterns. At urban background site (JNU), the dust flux was lowest (172 mg/m2/day) followed by CP, a commercial site, (192 mg/m2/day) and GB, an industrial/residential area, (302 mg/m2/day). Similar to the dustfall pattern, the mean values of OC, EC and CC deposition fluxes were also observed to be lowest at JNU (9.2, 0.8 and 1.0 mg/m2/day, respectively) as compared to CP (12.2, 1.2 and 1.3 mg/m2/day, respectively) and GB sites (11.1, 1.1 and 1.4 mg/m2/day, respectively). Interestingly, unlike fine mode, different correlation pattern of OC and EC in coarse mode dust aerosols at three sites has suggested their independent deposition processes and source contribution. Fluxes of major water soluble inorganic ions (Na+, NH4 +, K+, Ca2+, Mg2+, F?, Cl?, NO3 ? and SO4 2?) were also determined. Ca2+, Cl? and SO4 2? were found to be the major ionic species of water soluble fraction of the urban dust at all the sites. These interactions are corroborated by the morphology of the mixed aerosols. High levels of measured chemical species and their spatial distribution revealed close correspondence with the local emissions from transport, industries, biomass burning, road dust and construction activities etc.  相似文献   

11.
A detailed procedure using non-ionic macropourous XAD-8 and XAD-4 resins is presented for the isolation and fractionation of aerosol water-soluble organic compounds (WSOC) from aerosol samples. The procedure entails adsorption of WSOC fraction onto XAD-8 and XAD-4 resins, desalting of the adsorbed organic material with ultra-pure water, elution of the retained organic matter with 40% MeOH solution and freeze-drying. Due to resin’s different properties and to certain hydrophobic/hydrophilic interactions between the resin polymers and the organic matter, two major fractions were obtained; namely the XAD-8 and the XAD-4 eluates. The XAD-8 eluate, which accounts for 55–60% of total aerosol WSOC, is represented by partially acidic compounds with significant hydrophobic moieties. The XAD-4 fraction holds few conjugated systems and a higher content of hydrophilic structures with low molecular size, and accounts for 9% of total WSOC. The isolated WSOC sub-fractions were nearly free from inorganic species, and successful recoveries of organic matter from the resins were accomplished. With this procedure the XAD-8 eluate yields a mixture representative of those WSOC that are highly conjugated compounds in atmospheric aerosols. It also allows a successful characterisation of the organic material by advanced analytical techniques without the interference of inorganic species present in the original sample of atmospheric particles.  相似文献   

12.
Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2?±?46.4; 37.2?±?6.2; 15.2?±?5.4 and 18.0?±?5.1 μg m?3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning? +?soil dust, vehicular emissions?+?biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.  相似文献   

13.
Size-segregated particle samples were collected using a Berner 5-stage impactor (stages 1?C5: 0.05?C0.14?C0.42?C1.2?C3.5?C10???m aerodynamic diameter). The means for all 169?days and for different categories of days were used for a characterization. The sorting criteria were (a) the distinction between winter (Wi, November to April) and summer (Su, May to October), (b) the distinction between air mass inflow from a sector West (W, 210?°?C320?°) and from a sector East (E, 35?°?C140?°). For the assignment of the air mass origin 96-h backward trajectories were used and four categories (WiW, WiE, SuW and SuE) with 48, 18, 42 and 29?days were established. The lowest mean particle mass concentrations were found for SuW and the highest for WiE with relative mass concentration distributions of 5.9, 28.2, 36.5, 18.0, and 11.4?% and 3.5, 22.7, 52.6, 16.7, and 4.5?% for stages 1?C5, respectively. The mass closure for water soluble ions, water, organic material (OM) and elemental carbon (EC) accounts for 81?C99?% of the gravimetric mass in Wi and for 60?C81?% for Su, depending on the stage. The fractions of nitrate were relatively high for WiW while sulphate fractions are high for WiE. The estimated concentrations of secondary organic carbon (SOA) on stage 3 for WiW, WiE, SuW and SuE were 0.32, 1.25, 0.27 and 0.58???gm?3, respectively. The highest amount of SOA is found for WiE, representing 59?% of organic carbon (OC). The highest difference in the percentages of SOA in OC was found between winter (WiW 55?%, WiE 59?%) and summer (SuW and SuE 74?%) indicating photochemical processes during long-range transport. The mean Carbon Preference Indices (CPI) are highest for SuE (stage 4: 7.57 and stage 5: 9.82) resulting mainly from plant wax abrasion in the surrounding forests. For WiE the mean PAH concentration on stage 3 (9.7?ngm?3) is about five times higher than for WiW, indicating long range transport following domestic heating and other combustion processes.  相似文献   

14.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   

15.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   

16.
Precipitation Chemistry in the Sahelian Savanna of Niger, Africa   总被引:1,自引:0,他引:1  
Within the framework of the IDAF (IGAC DEBITS AFRICA) network, we present in this paper data on precipitation and aerosol chemistry in the semiarid savanna of the Sahelian region of Niger. An automatic wet-only precipitation collector was operated at the Banizoumbou station during the entire 1996 rainy season (June to September 1996). Inorganic (Na+, NH 4 + , K+, Mg2+, Ca2+, Cl-, NO 3 - , SO 4 2- ) and organic contents of the precipitation (HCOOH, CH3COOH, C2H5COOH) were determined by Ion Chromatography (IC) in 29 rainfall events. Once per week, bulk particle samples were collected on the same site, and soluble water material was determined by IC. We examined the influence of atmospheric gas and particle sources on the precipitation and aerosol chemical contents. We established the influence of marine, terrigenous, and biogenic sources in the Sahelian region. The terrigenous signature is dominant and related to Sahelian soil erosion, with a high calcium content in precipitation (31.2 eq L-1) and in aerosols (1.8 g m-3). Two other signatures of atmospheric sources are highlighted by the relatively high nitrogenous (ammonium and nitrate) and organic contents (formate, acetate) in the precipitation. Ammonium (12.9 eq L-1) and nitrate (12.3 eq L-1) contents confirm respectively the biogenic source of ammonia released by domestic animal excreta in Niger and the natural emissions from semiarid savannas soils, perturbed by wild or domestic animal grazing. In spite of a high potential acidity given by nitrate, formate and acetate; a weak acidity (H+ (2.1 eq L-1) is calculated from the mean pH of 5.67 measured. A statistical analysis of the aerosol chemical composition clearly indicates that nitrates are strongly correlated at the 1% level with terrigenous ions, i.e., Ca2+ and Mg2+ (0.95 < r < 1). We observed a similar relationship between all the terrigenous ions and nitrate in the precipitation. In the Sahelian region, alkaline soil dust representative of the terrigenous contribution interact, with gaseous nitrogenous and carbonaceous compounds, leading to the neutralization of acid gases and subsequent weak acidity in precipitation. Finally, taking into account the main chemical characteristics of Banizoumbou precipitations and aerosols, which demonstrate the importance of heterogeneous and multiphase chemical processes, we propose a conceptual model of the atmospheric chemistry in the Sahelian region.  相似文献   

17.
A statistically relevant correlation between the reaction rate coefficient, k OH, for the OH radical reaction with 161 organic compounds in the gas phase at 300 K, and the corresponding vertical ionisation energies E i,v, reveals two classes of compounds: aromatics where –log(k OH/cm3s-1)3/2E i,v(eV)–2 and aliphatics where –log(k OH/cm3s-1)4/5E i,v(eV)+3. The prediction of the rate coefficient, k OH, for the reaction of OH with organic molecules from the above equations has a probability of about 90%. Assuming a global diurnal mean of the OH radical concentration of 5×105 cm3, the upper limit of the tropospheric half-life of organic compounds and their persistence can be estimated.  相似文献   

18.
Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem differential mobility analyzer (TDMA) to examine the effect of tetracosane, octanoic acid, and lauric acid on the hygroscopic properties of NaCl aerosol particles at relative humidities (RH) between 30 and 95%. These organic compounds have been identified in ambient aerosol particle samples. A slight lowering of the deliquescence relative humidity (DRH) and suppression of hygroscopic growth for the NaCl-organic compound mixtures were observed when compared to pure NaCl particles. The growth of pure NaCl particles was 2.25 in diameter at 85% RH while the growth of the mixed particles was 1.3 to 1.7 in particle diameter at 85% RH with organic mass fraction of 30–50%. This shows that these organic compounds have to be present in rather large mass fractions to effect the hygroscopic behavior to a similar degree observed for ambient aerosol during field measurements. Despite the mixing of the organic material with NaCl, hysteresis was observed for decreasing RH histories, suggesting the formation of metastable droplets. These laboratory results are strikingly similar to ambient field results. For example, if the total organic mass fraction of the particles is between 0.30 and 0.50, the particle growth at 85% RH is about a factor of 1.4 for the laboratory and field measurements. Such reduction in growth compared to the pure inorganic salt is in contradiction to speculations concerning significant effects by organic compounds on cloud condensation nuclei and thus formation on clouds.  相似文献   

19.
Emissions of oxygenated volatile organic compounds (OVOC) from several plant species were measured in continuously stirred tank reactors (CSTR). High emission pulses of OVOCs were observed when plants were exposed to stress. Absolute emission rates were highly variable ranging up to 10–13 mol · cm–2 · s–1. The temporal shape of these emissions was described by a formalism similar to that of a consecutive reaction of pseudo first order kinetics. The main emitted OVOC was (Z)-3-hexenol together with other C6-aldehydes and alcohols, suggesting that lipoxygenase activity on linolenic acid was mainly responsible for OVOC production. Various stress factors induced lipoxygenase activity and subsequent emissions of OVOCs. These factors were exposure to high ozone concentrations, pathogen attack, and wounding. The pattern of OVOC emissions from tobacco was similar for different stress applications and the same products of lipoxygenase activity were emitted from all investigated plant species. Our results imply that these emissions occur as general response of the plants to stress. Since plants experience various abiotic or biotic stress factors in the environment, OVOC emissions as a response to stress are likely to be of significant importance for atmospheric chemistry.Now at  相似文献   

20.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号