首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of synthetic time‐lapse and real repeatability multi‐transient electromagnetic surveys over the North Sea Harding field. Using Archie's law to convert porosity and fluid saturation to resistivity we created 3D isotropic models of the reservoir resistivity at different stages of production from the initial state in 1996 through to complete hydrocarbon production by 2016 and, for each stage, we simulated an east‐west transient electromagnetic survey line across Harding. Unconstrained 1D full‐waveform Occam inversions of these synthetic data show that Harding should be detectable and its lateral extent reasonably well‐defined. Resistivity changes caused by hydrocarbon production from initial pre‐production state to production of the oil rim in 2011 are discernible as are significant changes from 2011–2016 during the modelled gas blowdown phase. The 2D repeatability surveys of 2007 and 2008 tied two wells: one on and the other off the structure. Between the two surveys the segment of the field under investigation produced 3.9 million barrels of oil – not enough to generate an observable time‐lapse electromagnetic anomaly with a signal‐to‐noise ratio of 40 dB. Processing of the 2007 and 2008 data included deconvolution for the measured source current and removal of spatially‐correlated noise, which increased the signal‐to‐noise ratio of the recovered impulse responses by about 20 dB and resulted in a normalized root‐mean‐square difference of 3.9% between the data sets. 1D full‐waveform Occam inversions of the real data showed that Harding was detectable and its lateral extent was also reasonably well‐defined. The results indicate that the multi‐transient electromagnetic method is suitable for exploration, appraisal and monitoring hydrocarbon production.  相似文献   

2.
A reliable wastewater characterization is a prerequisite for the selection of an acceptable treatment strategy for produced water which exhibits significant differences due to the varied kinds of wells, seasonal changes, and formation types. A complete characterization of produced water generated from oil, gas, and oil–gas fields in Turkey was performed based on seasonal and locational variations. The results showed that the produced water generated from oil field wells was highly polluted and wastewater volume was higher in comparison to gas and oil–gas field wells. Besides, the characterization of produced water was varying in a wide range based on seasonal and locational variations. Useful relationships were observed between chloride, sodium, bromide, and total dissolved solids concentrations. The results can be used in the design, operation, and optimization of wastewater treatment systems of petroleum and oil industries for future studies.  相似文献   

3.
The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective‐medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P‐wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas–oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite‐difference or finite‐element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas–oil zones, applying various fluid‐distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid‐distribution effects are neglected.  相似文献   

4.
Heating heavy oil reservoirs is a common method for reducing the high viscosity of heavy oil and thus increasing the recovery factor. Monitoring of these viscosity changes in the reservoir is essential for delineating the heated region and controlling production. In this study, we present an approach for estimating viscosity changes in a heavy oil reservoir. The approach consists of three steps: measuring seismic wave attenuation between reflections from above and below the reservoir, constructing time‐lapse Q and Q?1 factor maps, and interpreting these maps using Kelvin–Voigt and Maxwell viscoelastic models. We use a 4D relative spectrum method to measure changes in attenuation. The method is tested with synthetic seismic data that are noise free and data with additive Gaussian noise to show the robustness and the accuracy of the estimates of the Q‐factor. The results of the application of the method to a field data set exhibit alignment of high attenuation zones along the steam‐injection wells, and indicate that temperature dependent viscosity changes in the heavy oil reservoir can be explained by the Kelvin–Voigt model.  相似文献   

5.
A new method for time‐lapse signal separation and enhancement using singular‐value decomposition is presented. Singular‐value decomposition is used to separate a 4D signal into its constituent parts: common geology, time‐lapse response and noise. Synthetic tests which demonstrate the advantages of the singular‐value decomposition technique over traditional differencing methods are also presented. This signal separation and enhancement technique is used to map out both the original and moved oil–water contacts across the Nelson Field. The singular‐value decomposition technique allows the oil–water contact to be mapped across regions which would have been missed using traditional differencing methods. In particular, areas toward the edges of the field are highlighted by the technique. The oil–water contact is observed to move upwards across the field, with the largest movements being associated, as anticipated, with natural production. The results obtained are broadly consistent with those predicted by the reservoir simulator model. Singular‐value decomposition is demonstrated to be a useful tool for enhancing the time‐lapse signal and for gaining confidence in areas where traditional differencing fails.  相似文献   

6.
The heterogeneous distribution of fluids in patchy-saturated rocks generates significant velocity dispersion and attenuation of seismic waves. The mesoscopic Biot–Rayleigh theory is used to investigate the relations between wave responses and reservoir fluids. Multiscale theoretical modeling of rock physics is performed for gas/water saturated carbonate reservoirs. Comparisons with laboratory measurements, log and seismic data validate the rock physics template. Using post-stack and pre-stack seismic inversion, direct estimates of rock porosity and gas saturation of reservoirs are obtained, which are in good agreement with oil production tests of the wells.  相似文献   

7.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

8.
井间地震技术在松南油气开发中的初步应用研究   总被引:6,自引:1,他引:5       下载免费PDF全文
为了研究松南地区陆相砂泥岩薄互层储层岩石物性横向变化、微构造等对油气聚集的影响和探索利用高分辨率井间地震技术直接指示油气分布的可能性,开展了井间地震及地面小三维地震、VSP、测井等立体地震观测.使用了自行研制的井中炸药震源和常规地震记录仪器.采用层析成像方法、反射资料叠前偏移成像方法等对采集到的资料进行研究,得到了不同分辨率的地下构造和岩石物性信息,展示出不同方法技术在分辨薄储层能力上的差异.高分辨率的井间地震成果较好地实现了井间地层对比,查清了两井间储层横向变化和油气分布情况.层析速度与构造信息等的综合应用解释了两井油气产能差异的原因,建立了油气地质模型.所得成果显示出井间地震技术在油气开发中的潜力.  相似文献   

9.
为了研究松南地区陆相砂泥岩薄互层储层岩石物性横向变化、微构造等对油气聚集的影响和探索利用高分辨率井间地震技术直接指示油气分布的可能性,开展了井间地震及地面小三维地震、VSP、测井等立体地震观测.使用了自行研制的井中炸药震源和常规地震记录仪器.采用层析成像方法、反射资料叠前偏移成像方法等对采集到的资料进行研究,得到了不同分辨率的地下构造和岩石物性信息,展示出不同方法技术在分辨薄储层能力上的差异.高分辨率的井间地震成果较好地实现了井间地层对比,查清了两井间储层横向变化和油气分布情况.层析速度与构造信息等的综合应用解释了两井油气产能差异的原因,建立了油气地质模型.所得成果显示出井间地震技术在油气开发中的潜力.  相似文献   

10.
Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman‐filter‐based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time‐lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state–parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil–gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%–40% better than those from the joint estimation scheme, but require about a 30% increase in computational cost.  相似文献   

11.
A direct detection of hydrocarbons is used by connecting increased attenuation of seismic waves with oil and gas fields. This study analyzes the seismic attenuation of P- and S-waves in one tight sandstone gas reservoir and attempts to give the quantitative distinguishing results of gas and water by the characteristics of the seismic attenuation of P- and S-waves. The Hilbert–Huang Transform (HHT) is used to better measure attenuation associated with gas saturation. A formation absorption section is defined to compute the values of attenuation using the common frequency sections obtained by the HHT method. Values of attenuation have been extracted from three seismic sections intersecting three different wells: one gas-saturated well, one fully water-saturated well, and one gas- and water- saturated well. For the seismic data from the Sulige gas field located in northwest Ordos Basin, China, we observed that in the gas-saturated media the S-wave attenuation was very low and much lower than the P-wave attenuation. In the fully water-saturated media the S-wave attenuation was higher than the P-wave attenuation. We suggest that the joint application of P- and S-wave attenuation can improve the direct detection between gas and water in seismic sections. This study is hoped to be useful in seismic exploration as an aid for distinguishing gas and water from gas- and water-bearing formations.  相似文献   

12.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

13.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

14.
Permanent downhole sensors provide the eyes and ears to the reservoir and enable monitoring the reservoir conditions on a real‐time basis. In particular, the use of sensors and remotely controlled valves in wells and on the surface, in combination with reservoir flow models provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable to monitor the arrival of undesired fluids in the proximity of production wells. We use 1D modelling to investigate the expected signal magnitude and depth of investigation of a borehole radar sensor operating in an oilfield environment. We restrict the radar applicability to environments where the radar investigation depth can fit the reservoir size necessary to be monitored. Potential applications are steam chamber monitoring in steam assisted gravity drainage processes and water front monitoring in thin oil rim environments. A more sophisticated analysis of the limits of a radar system is carried out through 2D finite‐difference time‐domain simulations. The metal components of the wellbore casing can cause destructive interference with the emitted signal. A high dielectric medium surrounding the production well increases the amplitude of the signal and so the radar performance. Other reservoir constraints are given by the complexity of the reservoir and the dynamic of the fluids. Time‐lapse changes in the heterogeneity of the background formation strongly affect the retrieval of the target reflections and gradual fluid saturation changes reduce the amplitudes of the reflections.  相似文献   

15.
何汉漪 《地球物理学报》1999,42(01):120-126
在莺歌海盆地油气勘探中,应用高分辨率地震资料评价DF1一1气田,探明了储集层顶面的水道冲蚀,给出了正确的气田地质模式;并应用高分辨率地震资料做气藏描述,比较准确地估算了储集层的厚度与孔隙度,减少了评价井数.应用高分辨率地震的亮点加平点技术,在原认为是空构造的LD8一1构造发现了高产天然气。理论和实践都表明,若要得到高分辨率的地震资料,提高地震子波的频率是很重要的,但保护低频比提高高频更重要。高分辨率地震波阻抗剖面比地震偏移剖面更直接、更清晰地反映地下地质情况,直接用波阻抗剖面做地震解释和油藏描述可得到更好的效果。  相似文献   

16.
The impacts of unconventional oil and gas production via high-volume hydraulic fracturing (HVHF) on water resources, such as water use, groundwater and surface water contamination, and disposal of produced waters, have received a great deal of attention over the past decade. Conventional oil and gas production (e.g., enhanced oil recovery [EOR]), which has been occurring for more than a century in some areas of North America, shares the same environmental concerns, but has received comparatively little attention. Here, we compare the amount of produced water versus saltwater disposal (SWD) and injection for EOR in several prolific hydrocarbon producing regions in the United States and Canada. The total volume of saline and fresh to brackish water injected into depleted oil fields and nonproductive formations is greater than the total volume of produced waters in most regions. The addition of fresh to brackish “makeup” water for EOR may account for the net gain of subsurface water. The total amount of water injected and produced for conventional oil and gas production is greater than that associated with HVHF and unconventional oil and gas production by well over a factor of 10. Reservoir pressure increases from EOR and SWD wells are low compared to injection of fluids for HVHF, however, the longer duration of injections could allow for greater solute transport distances and potential for contamination. Attention should be refocused from the subsurface environmental impacts of HVHF to the oil and gas industry as a whole.  相似文献   

17.
Recognition of thin interbedded reservoirs in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present a technique for predicting the distribution of thin reservoirs using a broad frequency band and ultra high resolution seismic. Based on forward modeling, we recognized that a thin bed seismic reflection is characterized by changing amplitude with changing frequency (amplitude versus frequency, AVF). We calculate the thickness of thin reservoirs from their AVF characteristics and predict the distribution of thin bed reservoir using broad frequency band and ultra high resolution seismic. The technique has been applied in the 3D seismic area of Zhaoyuan in the northern part of the Songliao Basin. The seismic resolution is increased by two or three times over that of conventional seismic and many thin reservoirs have been identified. The technique has extensive application to the exploration and development of oil and gas, such as optimizing the location of exploration wells, the design of wells (especially horizontal wells), choice of production test layers, analyzing reservoir continuity in development wells, and so on.  相似文献   

18.
针对松辽盆地北部中浅层薄层识别难的问题,我们研究了用宽频带高分辨率地震预测薄层储层分布的方法。通过正演数据分析,发现薄层地震反射具有振幅随频率变化而变化的特征-简称为AVF特征,并提出利用储层反射AVF特征计算薄层储层的厚度,用薄层厚度对应的宽频带高分辨率地震方法预测薄层储层分布。该方法在松辽盆地肇源3D地区的实际应用中,大大提高了地震分辨率,查明了一大批薄层储层。该方法在油气勘探与开发中也有着广泛的应用领域,例如,井位设计,尤其是水平井设计,试油层位选择,开发井油层连通性分析等。  相似文献   

19.
Hydrocarbon production and fluid injection affect the level of subsurface stress and physical properties of the subsurface, and can cause reservoir‐related issues, such as compaction and subsidence. Monitoring of oil and gas reservoirs is therefore crucial. Time‐lapse seismic is used to monitor reservoirs and provide evidence of saturation and pressure changes within the reservoir. However, relative to background velocities and reflector depths, the time‐lapse changes in velocity and geomechanical properties are typically small between consecutive surveys. These changes can be measured by using apparent displacement between migrated images obtained from recorded data of multiple time‐lapse surveys. Apparent displacement measurements by using the classical cross‐correlation method are poorly resolved. Here, we propose the use of a phase‐correlation method, which has been developed in satellite imaging for sub‐pixel registration of the images, to overcome the limitations of cross‐correlation. Phase correlation provides both vertical and horizontal displacements with a much better resolution. After testing the method on synthetic data, we apply it to a real dataset from the Norne oil field and show that the phase‐correlation method can indeed provide better resolution.  相似文献   

20.
A method to provide an improved time‐lapse seismic attribute for dynamic interpretation is presented. This is based on the causal link between the time‐lapse seismic response and well production activity taken over time. The resultant image is obtained by computing correlation coefficients between sequences of time‐lapse seismic changes extracted over different time intervals from multiply repeated seismic and identical time sequences of cumulative fluid volumes produced or injected from the wells. Maps of these cross‐correlations show localized, spatially contiguous signals surrounding individual wells or a specific well group. These may be associated with connected regions around the selected well or well group. Application firstly to a synthetic data set reveals that hydraulic compartments may be delineated using this method. A second application to a field data set provides empirical evidence that a connected well‐centric fault block and active geobody can be detected. It is concluded that uniting well data and time‐lapse seismic using our proposed method delivers a new attribute for dynamic interpretation and potential updating of the model for the producing reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号