首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Some drainage ditches in the intensively managed row-crop agricultural region of southern Minnesota evolved from a trapezoidal form to multi-staged channel forms similar to natural streams. Older ditches constructed in cohesive sediment of the Des Moines Lobe till tend to follow a channel evolution model developed by Simon and Hupp. Site cross sections, longitudinal water and bed profiles and bed material particle size were determined according to Harrelson and others at 24 older ditch reaches, 5 newly constructed ditch reaches and 13 natural stream reaches. Morphological features were hypothesized to change from trapezoidal form to flat bench banks, similar to benches found in natural stream channels. All data were statistically analyzed with respect to drainage area using regression, because channel form is directly related to drainage area for a given climate, geology and land use. Results show similar regression slope and intercept for bankfull channel width and bankfull cross-sectional area (CSA) of older ditches and natural streams compared to typical trapezoidal designed ditches. Evolved ditches developed a small floodplain bench above the ditch bed and adjusted their bankfull widths similar to natural stream channels with respect to drainage area. Old ditches showed a relatively strong R 2 (0.82, 0.68) for channel CSA and width, a weaker R 2 (0.45) for water surface slope, and little to no correlation with bed particle size. Channel form appears to have adjusted more quickly than bed facets and/or bed particle size distribution. However, stepwise regression determined that D84, width/depth ratio and mean bankfull depth explained 83?% of the variability of channel features across varying drainage areas. Findings suggest a possible reduction of long-term maintenance costs if older ditches are allowed to evolve over time. A stable ditch form similar to natural streams is typically self-sustaining, suggesting that prior to a scheduled clean-out, the ditch should be examined for hydraulic capacity, sediment transport and bank stability.  相似文献   

2.
为全面描述黄河口尾闾段的河床形态调整及过流能力变化,采用河段平均的计算方法,确定了尾闾段(利津—西河口)1990—2016年汛后断面及河段尺度的平滩特征参数,分析河段平滩河槽形态调整特点、河段平滩流量变化过程及其与累积河床冲淤量的关系。结果表明:近30年来黄河尾闾段的河床形态调整过程较为复杂,河相系数在1990—2003年呈振荡式升高,2003年以后持续减小,说明断面形态朝窄深方向发展;平滩流量变化与河段冲淤过程密切相关,淤积时平滩流量减小,反之则增大;建立这些河段平滩特征参数与利津站前4年汛期平均水流冲刷强度的幂函数关系,且相关系数均大于0.8,说明黄河口尾闾段河床形态调整及过流能力变化能较好地响应利津站水沙条件的改变。  相似文献   

3.
为研究冲积性河流造床机理,基于能量耗散原理分析河床调整与水沙过程(变异特性)间的关系十分必要。以黄河游荡型河段为例,利用实测资料分析和平面二维水沙数值模拟方法,进行了各种洪水泥沙条件下河流冲淤规律的探讨。研究发现平滩面积、河相系数与径流泥沙特征值间存在的关联性映射出冲积性河流能量关系中的制约机制;不同洪水泥沙过程的河床冲刷强度变化具有阶段性,主槽累积刷槽效应与洪水泥沙过程有密切响应关系;高效输沙的洪水过程通过塑造最适宜的河床断面形态,能实现最佳输沙效率与主槽的最大冲刷。在不同漫滩洪水条件中,综合系数Φ最大时的洪水过程具有最大累积刷槽效应,因此对应流量可作为黄河下游漫滩洪水的调控指标。  相似文献   

4.
针对近期荆江段河槽形态的显著调整,定量研究了三峡工程运用对其造成的影响。计算了2002—2013年该河段断面及河段尺度的平滩河槽形态参数,并建立这些参数与宜昌站汛期水流冲刷强度的经验关系。还原了在无三峡工程时宜昌站的水沙数据,计算了相应的河槽形态参数,分析了有、无三峡工程时荆江段河槽形态调整的差异。计算结果表明:三峡工程运用后近期荆江段平均河床比降略有调平,河段平滩水深逐年增加,但平滩河宽变化较小,使得河相系数减少6.7%~10.3%;无三峡工程时平滩河槽形态调整较缓,河段平滩水深及面积的增幅分别仅占有三峡工程时的16%和18%。故三峡工程运用没有改变近期荆江段河槽形态趋于窄深的调整趋势,但一定程度上加快了调整过程。  相似文献   

5.
Bankfull discharge is a comprehensive factor reflecting the channel-forming capability of water flow and the flood and sediment transport capacity of a river channel. It is based on the interaction of the flow, sediment, and river channel, of which flow and sediment conditions play crucial roles. Using data recorded since the 1950s, this paper analyses statistically, the characteristics and variations of bankfull discharge at two stations on the Inner Mongolian reaches of the upper Yellow River. Results indicate that flood season variations in bankfull discharge are nonlinear and are governed by flood peak discharge, mean discharge, and the mean incoming sediment coefficients. Variation in bankfull discharge is related not only to the flow and sediment conditions of the current year but also to those of previous years. The 10-year moving average of flow and sediment conditions can be representative of present and previous years. By considering flood season peak discharge and incoming sediment coefficients as independent impact factors, a formula is derived to determine bankfull discharge. The results can be used to predict the bankfull discharge of the Yellow River channel in Inner Mongolia under specific flow and sediment conditions and provide reference for the purpose of further study related to restoring and maintaining the basic functions of the river channel regarding flood discharge and sediments.  相似文献   

6.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

7.
In the absence of long-term hydrologic and streamflow records an understanding of river morphology (present and past) can help delineate changes in magnitudes of water and sediment discharges. The relict drainage system of Gujarat alluvial plain provides an opportunity to reconstruct the palaeochannel morphology-related discharge estimations. In this paper, based on the geomorphological evidence and channel geometry, an attempt has been made to reconstruct the palaeohydrological condition in the Shedhi River during the Holocene. A comparison of the present day channel of the Shedhi River with that of its palaeo counterpart reveals that the former was carrying much higher bankfull discharge (∼5500m3 s−1) as compared to the present (∼200m3 s−1). This is attributed to a larger drainage area and enhanced precipitation in the Shedhi River basin.  相似文献   

8.
Chao Ma  Jiayong Deng  Rui Wang 《Landslides》2018,15(12):2475-2485
The occurrence of debris flow from channel-bed failure is occasionally noted in small and steeply sloping watersheds where channelized water flow dominates debris flow initiation. On August 12, 2016, a debris flow from channel-bed failures occurred in the Caozhuangzi Watershed of the Longtan Basin, Miyun, Beijing. Rainfall records over 10-min intervals and field investigations including channel morphology measurements were used to study the triggering conditions and erosion process. The results indicated that the occurrence of this event lagged the peak 10-min rainfall interval and that the cumulative rainfall prior to the occurrence time played an important role in its formation. A mean 10-min rainfall intensity–duration expression in the form of I10?=?5.0?×?D?0.21, where I10 denotes the mean 10-min rainfall intensity and D is the rainfall duration ranging from 10 to 60 h, was proposed. The debris flows have low proportions of grain size fractions <?0.1 mm and higher fractions of grains 0.1–2 mm in size, indicating that the flow had low viscosity and was coarse-grain dominated. Channel morphology analysis revealed that abrupt changes in topography in the study area, including a steep section, a concave stream bank area, and a partial concave stream section were eroded more extensively than other sites. The maximum sediment erosion volume and erosion depth were not proportional to the variation in stream gradient. Consideration of the degree of erosion in the channel at sites with abrupt morphology changes, the maximum sediment erosion volume, and the erosion depth and volume at the initial channel site and downstream region of forest area together showed that the prime factor controlling erosion was entrained sediment volume. This work, thus, provides a case study regarding the triggering conditions of runoff-triggered debris flows and the topographical changes by debris flow erosion.  相似文献   

9.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   

10.
河道过流能力与主槽形态有关,而主槽形态又取决于上游水沙条件,分析过流能力与这两者之间的关系对研究黄河下游游荡段河床演变规律有重要意义。从典型断面和河段平均两个尺度,定量分析了黄河下游游荡段1986—2015年平滩流量与水沙条件(来沙系数和水流冲刷强度)及汛前主槽形态(河相系数)之间的响应关系。结果表明:① 1986年至小浪底水库运行前,游荡段淤积严重,主槽萎缩,河道过流能力急剧下降,自小浪底水库运行后,游荡段发生强烈冲刷,其断面持续趋向窄深,过流能力逐年恢复;②建立了断面和河段平滩流量与水沙条件及河相系数的幂函数关系,二者相关系数均在0.5以上,但河段尺度相比于断面尺度的相关系数至少可提高17%;③河段平滩流量与前5年汛期平均水流冲刷强度及河相系数的相关系数接近0.94,相应计算公式能较好地反映平滩流量的变化过程,为分析其他河段平滩流量的变化提供了参考方法。  相似文献   

11.
An examination of river channels has ability to provide substantial information regarding the geomorphic characteristics, control of lithology, tectonic uplift and geomorphic evolution during the geological past of an area. In this paper, a detailed study of geomorphic and structural investigation has been carried out for Pravara basin, Maharashtra, with the help of 90-m resolution SRTM DEM and geospatial techniques. Drainage network analysis performed in this paper demonstrates the general geomorphic characteristics, while the analysis of longitudinal profile synthesises lithological control over Pravara basin. Pravara is a 6th order drainage basin, encompassing an area of 2637 km2. Bifurcation ratio reveals low to moderate structural control. Due to the hard rock lithology, the drainage density and stream frequency are low, and it indicates higher permeability in the sub-surface layers. The shape parameters denote that Pravara is highly elongated and it is easier to control floods in this basin. Relief parameters show very steep slope and higher vulnerability to the slope failure in some areas. Upstream of Pravara river has shown that series of breaks and knickzones indicate active erosion and acute lithological control on the channel. Major breaks are observed only in the main channel whereas in two major tributaries, no such breaks found, instead these tributaries are characterised by several knickzones which indicate regional variation in the lithological physiognomies. Different lithological stages on knickpoint and channel incision substantiate rejuvenation of Pravara river in several phases during geological past. The geospatial methodology carried out in this study can be pragmatic elsewhere around this world to recognise the geomorphic appearances and lithological control of a drainage basin.  相似文献   

12.
Geomorphic considerations for erosion prediction   总被引:9,自引:0,他引:9  
 Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction. Received: 8 November 1995 · Accepted: 20 November 1995  相似文献   

13.
对涪江上游流域盆地地貌特征及成因进行研究,有助于揭示青藏高原东缘晚新生代以来新构造活动的差异性。本文以ArcGIS水文分析模块为技术平台,在研究区域内系统提取涪江上游流域盆地地表水系网络和涪江干流东西两侧36个亚流域盆地,并对亚流域盆地面积、周长、水系总长度、水系分支比、流域盆地演化阶段进行统计分析,结果表明,涪江干流河道东西两侧典型地貌参数存在显著差异。通过对该区域构造运动、岩石抗侵蚀能力、降水特征等几方面因素与河流下切过程相关性的分析可知,降水条件和岩性差异并不是涪江上游亚流域盆地不对称发育的主要影响因素,该区域断裂活动导致的地形不对称分布格局及岩层破碎程度的差异是涪江上游流域地貌差异演化的主控因素。另外,涪江上游干流展布呈现出两个特征:涪江干流河道因雪山断裂、北川-映秀断裂、彭县-灌县断裂的右旋(或左旋)走滑作用而沿断裂发生同步弯曲;涪江干流河道在北川-映秀断裂北侧由西北-东南流向转变为近正南流向,究其原因,主要是龙门山断裂带3条主干断裂的区域性右旋走滑活动驱动该区域物质产生相应右旋运动,从而使长期处于断层右旋作用控制之下的涪江干流河道发生转向。  相似文献   

14.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

15.
河道过流能力与主槽形态有关,而主槽形态又取决于上游水沙条件,分析过流能力与这两者之间的关系对研究黄河下游游荡段河床演变规律有重要意义。从典型断面和河段平均两个尺度,定量分析了黄河下游游荡段1986-2015年平滩流量与水沙条件(来沙系数和水流冲刷强度)及汛前主槽形态(河相系数)之间的响应关系。结果表明:①1986年至小浪底水库运行前,游荡段淤积严重,主槽萎缩,河道过流能力急剧下降,自小浪底水库运行后,游荡段发生强烈冲刷,其断面持续趋向窄深,过流能力逐年恢复;②建立了断面和河段平滩流量与水沙条件及河相系数的幂函数关系,二者相关系数均在0.5以上,但河段尺度相比于断面尺度的相关系数至少可提高17%;③河段平滩流量与前5年汛期平均水流冲刷强度及河相系数的相关系数接近0.94,相应计算公式能较好地反映平滩流量的变化过程,为分析其他河段平滩流量的变化提供了参考方法。  相似文献   

16.
滩地的淤积层分布记录着以往漫滩洪水的特征,即反映漫滩洪水的量级、频率和持续时间等,同时河漫滩也是预估河流泥沙、洪水灾害防治和湿地生态系统保护等的重要组成部分。根据黄河下游水文年鉴资料,分析滩地的淤积与漫滩洪水的定量关系,为未来河流泥沙预估提供依据。经分析得到大漫滩洪水在来沙系数S/Q<0.030 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。当S/Q<0.030 kg·s/m6时,大漫滩洪水滩地的淤积量主要与漫滩系数Qmax/Qp、上滩水量W0和含沙量S有关;大漫滩洪水的主槽冲刷量则除了与洪水期水量W和沙量Ws有关外,还与滩地的淤积量有关。一般漫滩洪水,当来沙系数S/Q<0.023 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。一般漫滩洪水主槽冲刷量与来沙系数S/Q和洪水期水量W有关,而滩地淤积量仅与含沙量S有关。黄河下游漫滩洪水滩地的淤积和主槽的冲刷主要发生在孙口以上河段,而孙口以下河段主槽冲刷和滩地淤积量均较少。  相似文献   

17.
近期黄河下游游荡段滩岸崩退过程及特点   总被引:2,自引:0,他引:2       下载免费PDF全文
小浪底水库运行后,黄河下游游荡段河床冲刷剧烈,滩岸崩退过程较为显著。估算典型断面的滩岸崩退过程,不仅有助于全面掌握该河段的河床演变规律,同时也能为河道整治及规划等提供相关参数。以1999—2013年游荡段典型断面(水文断面及淤积断面)汛后实测地形资料为基础,确定了这些断面平滩河宽的调整过程,发现多年平均崩退速率最大达215 m/a;分析了影响滩岸崩退过程的不同因素,发现滩岸土体组成及力学特性、滩槽高差等因素虽对崩退过程有一定影响,但来水来沙条件是主要影响因素;分别建立了游荡段水文断面及淤积断面滩岸累计崩退宽度与前期5年平均汛期水流冲刷强度之间的经验关系,相关系数都在0.85以上。公式计算值与实测值吻合较好,可用来估算游荡段典型断面滩岸的崩退过程。  相似文献   

18.
流域侵蚀速率的时空变化对于理解活动造山带的地貌演化具有重要意义。以阿尔泰山8个山地流域为研究对象,利用1964—2011年的水文数据,采用河流输沙量法估算了年代际山地流域侵蚀速率。首先确定悬移质、推移质和溶解质对河流输沙量的贡献,然后计算各流域的年代际侵蚀速率,并结合已有研究结果,探讨了阿尔泰山流域侵蚀速率的时空特征及其控制因素。结果表明:阿尔泰山8个山地流域的平均侵蚀速率为0.03 mm·a-1,其中乌伦古河山地流域侵蚀速率最小(0.01 mm·a-1),额尔齐斯河支流克兰河山地流域侵蚀速率最大(0.05 mm·a-1)。进一步对侵蚀速率与气候、地形、岩性、构造和植被等因素进行相关分析,发现流域侵蚀速率与地形因子(流域面积、地形起伏度)和气候因子(径流深度、平均温度)的相关性较强,表明这些因素可能对阿尔泰山山地流域侵蚀起主要影响。与阿尔泰山百万年尺度的剥蚀速率(0.07~0.3 mm·a-1)相比,研究时段内的流域侵蚀速率偏低,这表明中亚地区晚新生代持续的干旱气候可能制约了阿尔泰山地表侵蚀。  相似文献   

19.
Erosion and sediment redistribution are important processes in landscape changes in the short and long term. In this study, the RMMF model of soil erosion and the SEDD model of sediment delivery were used to estimate annual soil loss and sediment yield in an ungauged catchment of the Spanish Pre-Pyrenees and results were interpreted in the context of the geomorphic features. The Estaña Catchment is divided into 15 endorheic sub-catchments and there are 17 dolines. Gullies and slopes were the main erosive geomorphic elements, whereas the colluvial, alluvial, valley floor, and doline deposits were depositional elements. Spatially distributed maps of gross soil erosion, sediment delivery ratio (SDR), and sediment yield (SY) were generated in a GIS. Severe erosion rates (>100 Mg ha?1 year?1) were found in gullies, whereas mean and maximum erosion rates were very high on slopes developed on Keüper Facies and high in soils on Muschelkalk Facies. Where crops are grown, the depositional-type geoforms were predicted by the models to have an erosive dynamic. Those results were consistent with the rates of erosion quantified by 137Cs which reflects the significant role of human activities in triggering soil erosion. Catchment area was positively correlated with erosion rate, but negatively correlated with SDR and SY. The latter were negatively correlated with the proportion of the surface catchment covered with forests and scrublands. The topography of the area influenced the high SDR and SY in the dolines and valley floors near the sinks. Intra-basin stored sediment was 59.2% of the total annual eroded soil in the catchment. The combination of the RMMF and SEDD models was an appropriate means of assessing the effects of land uses on soil erosion and obtaining a better understanding of the processes that underlie the geomorphic changes occurring in mountainous environments of the Mediterranean region.  相似文献   

20.
The geologic and geomorphic template of Grand Canyon influences patterns in the archaeological record, including sites where apparent increases in erosion may be related to Glen Canyon Dam. To provide geoarchaeological context for the Colorado River corridor and such issues, we explore first‐order trends in a database of field observations and topographic metrics from 227 cultural sites. The patterns revealed may be expected in other river‐canyon settings of management concern. The spatial clustering of sites along the river follows variations in width of the valley bottom and the occurrence of alluvial terraces and debris fans, linking to bedrock controls. In contrast, the pattern of more Formative (Ancestral Puebloan, 800–1250 A.D.) sites in eastern Grand Canyon and Protohistoric (1250–1776 A.D.) sites in western Grand Canyon does not follow any evident geomorphic trends. In terms of site stability, wider reaches with more terrace and debris fan landforms host a disproportionate number of sites with acute erosion. This links most directly to weak alluvial substrates, and the primary erosion process is gullying with diffusive‐creep processes also pervasive. Although Glen Canyon Dam does not directly influence these erosion processes, overall sediment depletion and the loss of major flooding leaves erosion unhampered along the river corridor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号