首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solubility of platinum and palladium in a silicate melt of the composition Di 55 An 35 Ab 10 was determined at 1200°C and 2 kbar pressure in the presence of H2O-H2 fluid at an oxygen fugacity ranging from the HM to WI buffer equilibria. The influence of sulfur on the solubility of platinum in fluid-bearing silicate melt was investigated at a sulfur fugacity controlled by the Pt-PtS equilibrium at 1200°C and a pressure defined in such a way that the \(f_{H_2 O} \) and \(f_{O_2 } \) values were identical to those of the experiments without sulfur. The experiments were conducted in a high pressure gas vessel with controlled hydrogen content in the fluid. Oxygen fugacity values above the NNO buffer were controlled by solid-phase buffer mixtures using the two-capsule technique. Under more reducing conditions, the contents of H2O and H2 were directly controlled by the argon to hydrogen ratio in a special chamber. The hydrogen fugacity varied from 5.2 × 10?2 bar (HM buffer) to 1230 bar (\(X_{H_2 } \) = 0.5). Pt and Pd contents were measured in quenched glass samples by neutron activation analysis. The results of these investigations showed that the solubility of Pt and Pd increases significantly in the presence of water compared with experiments in dry systems. The content of Pd within the whole range of redox conditions and that of Pt at an oxygen fugacity between the HM to MW buffer reactions are weakly dependent on \(f_{O_2 } \) and controlled mainly by water fugacity. This suggests that, in addition to oxide Pt and Pd species soluble at the ppb level in haplobasaltic melts, much more soluble (ppm level) hydroxide complexes of these metals are formed under fluid-excess conditions. Despite a decrease in water fugacity under reducing conditions, Pt solubility increases sharply near the MW buffer. It was shown by electron paramagnetic resonance spectrometry that, in contrast to dry melts, fluid-saturated silicate melts do not contain a pure metal phase (micronuggets). Therefore, the increase in Pt solubility under reducing conditions can be explained by the formation of Pt hydride complexes or Pt-fluid-silicate clusters. At a sulfur fugacity controlled by the Pt-PtS equilibrium, the solubility of Pt in iron-free silicate melts as a function of redox conditions is almost identical to that obtained in the experiments without sulfur at the same water and oxygen fugacity values. These observations also support Pt dissolution in iron-free silicate melts as hydroxide species.  相似文献   

2.
Haplobasaltic melts with a 101 kPa dry eutectic composition (An42Di58) and varying water contents were equilibrated with their platinum capsule at 1523 K and 200 MPa in an internally heated pressure vessel (IHPV) equipped with a rapid quench device. Experimental products were inclusion-free glasses representative of the Pt-saturated silicate melts at the experimental conditions. Platinum concentrations were determined using an isotope dilution multicollector inductively coupled plasma mass spectrometer and water contents and distribution by Karl Fischer titration and Fourier transform infrared spectroscopy, respectively.The water content of the melt has no intrinsic effect on platinum solubility, for concentrations between 0.9 wt.% and 4.4 wt.% H2O (saturation). Platinum solubility increases with increasing water content, but this effect is an indirect effect because increasing water content at fixed fH2 (imposed by the IHPV) increases the oxygen fugacity of the experiment.The positive oxygen fugacity dependence of Pt solubility in a hydrous silicate melt at 200 MPa is identical to that in anhydrous melts of the same composition determined in previous studies at 101 kPa. This study extends the range of platinum solubilities to oxygen fugacities lower than was previously possible. Combining the data of this and previous studies, Pt solubility is related to oxygen fugacity (in bar) at 1523 K by the equation:
[Pt]total(ppb)=1389×fO2+7531×(fO2)1/2  相似文献   

3.
We designed and carried out experiments to investigate the effect of H2O on the liquidus temperature of olivine-saturated primitive melts. The effect of H2O was isolated from other influences by experimentally determining the liquidus temperatures of the same melt composition with various amounts of H2O added. Experimental data indicate that the effect of H2O does not depend on pressure or melt composition in the basaltic compositional range. The influence of H2O on melting point lowering can be described as a polynomial function This expression can be used to account for the effect of H2O on olivine-melt thermometers, and can be incorporated into fractionation models for primitive basalts. The non-linear effect of H2O indicates that incorporation of H2O in silicate melts is non-ideal, and involves interaction between H2O and other melt components. The simple speciation approach that seems to account for the influence of H2O in simple systems (albite-H2O, diopside-H2O) fails to describe the mixing behavior of H2O in multi-component silicate melts. However, a non-ideal solution model that treats the effect of H2O addition as a positive excess free energy can be fitted to describe the effect of melting point lowering.  相似文献   

4.
This study presents a new experimental approach for determining H2O solubility in basaltic melt at upper mantle conditions. Traditional solubility experiments are limited to pressures of ~600 MPa or less because it is difficult to reliably quench silicate melts containing greater than ~10 wt% dissolved H2O. To overcome this limitation, our approach relies on the use of secondary ion mass spectrometry to measure the concentration of H dissolved in olivine and on using the measured H in olivine as a proxy for the concentration of H2O in the co-existing basaltic melt. The solubility of H2O in the melt is determined by performing a series of experiments at a single pressure and temperature with increasing amounts of liquid H2O added to each charge. The point at which the concentration of H in the olivine first becomes independent of the amount of initial H2O content of the charge (added + adsorbed H2O) indicates its solubility in the melt. Experiments were conducted by packing basalt powder into a capsule fabricated from San Carlos olivine, which was then pressure-sealed inside a Ni outer capsule. Our experimental results indicate that at 1000 MPa and 1200 °C, the solubility of H2O in basaltic melt is 20.6 ± 0.9 wt% (2 × standard deviation). This concentration is considerably higher than predicted by most solubility models but defines a linear relationship between H2O fugacity and the square of molar H2O solubility when combined with solubility data from lower pressure experiments. Further, our solubility determination agrees with melting point depression determined experimentally by Grove et al. (2006) for the H2O-saturated peridotite solidus at 1000 MPa. Melting point depression calculations were used to estimate H2O solubility in basalt along the experimentally determined H2O-saturated peridotite solidus. The results suggest that a linear relationship between H2O fugacity and the square of molar solubility exists up to ~1300 MPa, where there is an inflection point and solubility begins to increase less strongly with increasing H2O fugacity.  相似文献   

5.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

6.
Considering physical segregation of melt from its residue, the chemical potentials of the components (oxides) are the same in both when segregation occurs. Then, as PT conditions change, gradients in chemical potential are established between the melt‐rich domains and residue permitting diffusional interaction to occur. In particular, on cooling, the chemical potential of H2O becomes higher in the melt segregation than in the residue, particularly when biotite becomes stable in the residue assemblage. Diffusion of water from the melt to the residue promotes crystallization of anhydrous products from the melt and hydrous products in the residue. This diffusive process, when coupled with melt loss from the rocks subsequent to some degree of crystallization, can result in a significant degree of anhydrous leucosome being preserved in a migmatite with only minor retrogression of the residue. If H2O can diffuse between the melt segregation and all of the residue, then no apparent selvedge between the two will be observed. Alternatively, if H2O can diffuse between the melt segregation and only part of the residue, then a distinct selvedge may be produced. Diffusion of H2O into the residue may be in part responsible for the commonly anhydrous nature of leucosomes, especially in granulite facies migmatites. Diffusion of other relatively mobile species such as Na2O and K2O has a lesser effect on overall melt crystallization but can change the proportion of quartz, plagioclase and K‐feldspar in the resultant leucosome. The diffusion of H2O out of the melt results in the enhanced crystallization of the melt in the segregation and increases the amount of resulting anhydrous leucosome relative to the amount produced if melt crystallized in chemical isolation from the residue. For high residue:melt ratios, the proportion of resulting near‐anhydrous leucosome can approach that of the proportion of melt present at the onset of cooling with only minor loss of melt from a given segregation required. Crystallization of melt segregations via the diffusion of H2O out of them into the host may also play a major role in driving melt‐rich segregations across key rheological transitions that would allow the expulsion of remaining melt from the system.  相似文献   

7.
The solubility of H2O–CO2–Cl-containing fluids of various concentrations (0, 3, 10, and 23 wt % of HCl and from 0 to ~8–15 wt % of CO2) in dacite, phonolite, and rhyolite melts at 1000°C and 200 MPa was studied in experiments. It was shown that the Cl concentration in the melt increased substantially from rhyolite to phonolite and dacite (up to 0.25, 0.85, and 1.2 wt %, respectively). The introduction of CO2 into the system resulted in an increase in the Cl content in the melt composition by 20–25%. One may suppose that Cl reactivity in a fluid increases in the presence of CO2 to cause growth of the Cl content in the melt. The introduction of CO2 into the system considerably affects the content of H2O in aluminosilicate melts as well. Thus, the addition of CO2 decreases the H2O content in the melt by ~0.5–1.0 wt %. The decrease in the H2O content in an aluminosilicate melt is probably caused by fluid dilution with CO2 resulting in a decrease in the H2O mole fraction and fugacity in the fluid.  相似文献   

8.
Experiments carried out on the system SiO2-NaAlSi3O8-KAlSi3O8(Qz-Ab-Or) at 1 kbar in the presence of H2O and F show that the quartz-alkali feldspar field boundary is progressively displaced towards the feldspar join as F contents increase from 0 to 4 wt. %F. Increasing , in the absence of F, has already been shown to have a similar effect (Tuttle and Bowen 1958; Luth, Jahns, and Tuttle 1964). The increased size of the quartz field in the F-bearing system compared to the hydrous system is believed to be caused by progressive removal of Al from the tetrahedral network of the melt by complexing with F. The residual network in the melt is thus enriched in Si and this stabilizes precipitation of quartz rather than feldspar for certain bulk compositions. The common presence of quench cryolite (Na3AlF6) in certain experiments carried out with 4 wt.% F supports this interpretation and indicates that some Al in the melt may be present in six-fold coordination with F. The effect of H2O in the absence of F may be similar, with Al being progressively removed from four-fold coordination as more H2O is dissolved in the melt. Although a proportion of Al in hydrous melts may occur in six-fold coordination, dry melts predominantly contain Al in four-fold coordination. This major difference in Al complexing may be one of the main causes for differences in the high-pressure phase relations of wet and dry Albearing silicate systems.  相似文献   

9.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

10.
11.
Syngenetic garnet of eclogitic/pyroxenitic composition included in a polycrystalline diamond aggregate from the Venetia kimberlite, Limpopo Belt, South Africa shows multiple inclusions of spherules consisting of 61±5 vol% Fe3C (cohenite), 30±2 vol% Fe-Ni and 9±3 vol% FeS (troilite). Troilite forms shells around the native iron-cohenite assemblage, implying that both compositions were immiscible melts and were trapped rapidly by the silicate. It is proposed that this polycrystalline diamond-silicate-metallic spherule assemblage formed in very local pressure and fO2 conditions in cracks at the base of the subcratonic lithosphere from a C-H-O fluid that reacted with surrounding silicate at about 1,300–1,400 °C. In a mantle fluid consisting of CH4>H2O>H2 near fO2=IW, the H2 activity increases rapidly when carbon from the fluid is consumed by diamond precipitation, driving the oxygen fugacity of the system to lower values along the diamond saturation curve. Water from the fluid induces melting of surrounding silicate material, and hydrogen reduces metals in the silicate melt, reflected by an unusually low Ni content of the garnet. The carbon isotopic composition of 13C=–13.69 (PDB) and the lack of nitrogen as an impurity is consistent with formation of the diamond from non-biogenic methane, whereas 18O=7.4 (SMOW) of the garnet implies derivation of the silicate from subduction-related material. Hence, very localized and transient reducing conditions within the subcratonic lithosphere can be created by this process and do not necessarily call for involvement of fluids derived from subducted material of biogenic origin.Editorial responsibility: J. Hoefs  相似文献   

12.
 Diffusion rates for sulfur in rhyolite melt have been measured at temperatures of 800–1100° C, water contents of 0–7.3 wt%, and oxygen fugacities from the quartz-fayalite-magnetite buffer to air. Experiments involved dissolution of anhydrite or pyrrhotite into rhyolite melt over time scales of hours to days. Electron microprobe analysis was used to measure sulfur concentration profiles in the quenched glasses. Regression of the diffusion data in dry rhyolite melt gives Dsulfur=0.05·exp{−221±80RT}, which is one to two orders of magnitude slower than diffusion of other common magmatic volatiles such as H2O, CO2 and Cl-. Diffusion of sulfur in melt with 7 wt% dissolved water is 1.5 to 2 orders of magnitude faster than diffusion in the anhydrous melt, depending on temperature. Sulfur is known to dissolve in silicate melts as at least two different species, S2− and S6+, the proportions of which vary with oxygen fugacity; despite this, oxygen fugacity does not appear to affect sulfur diffusivity except under extremely oxidizing conditions. This result suggests that diffusion of sulfur is controlled by one species over a large range in oxygen fugacity. The most likely candidate for the diffusing species is the sulfide ion, S2−. Re-equilibration between S2− and S6+ in oxidized melts must generally be slow compared to S2− diffusion in order to explain the observed results. In a silicic melt undergoing degassing, sulfur will tend to be fractionated from other volatile species which diffuse more rapidly. This is consistent with analyses of tephra from the 1991 eruption of Mount Pinatubo, Philippines, and from other high-silica volcanic eruptions. Received: 26 April 1995 / Accepted: 1 November 1995  相似文献   

13.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   

14.
A. A. Borisov 《Petrology》2007,15(6):523-529
The solubility of cobalt and iron in silicate melts with variable SiO2 content was experimentally determined under controlled oxygen fugacity. It was shown that, independent of temperature and oxygen fugacity, the solubility of the two metals reaches a maximum (minimum of CoO and FeO activity coefficients) in melts of intermediate compositions. The analysis of available published data demonstrated that the γMeO values of at least four metals (Ni, Co, Fe, and Cr) dissolving in melts as divalent oxides show a minimum in melts with \(X_{SiO_2 } \) ≈ 57 ± 2 mol %. The position of the minimum is essentially independent of the element, melt temperature, and oxide concentration (from a few ppm to 13 wt%). The extremes of iron solubility (γFeO) in Fe-rich MgO-free melts may shift toward significantly lower \(X_{SiO_2 } \) values, although this inference requires additional experimental verification. Using a numerical example, some problems were discussed in the use of experimental data obtained in different laboratories for the development of a general model for the γMeO dependence on melt composition.  相似文献   

15.
Many experimental studies have been performed to evaluate the composition of coexisting silicate melts and magmatic volatile phases (MVP). However, few studies have attempted to define the relationship between melt chemistry and the acidity of a chloride-bearing fluid. Here we report data on melt composition as a function of the HCl concentration of coexisting brines. We performed 35 experimental runs with a NaCl-KCl-HCl-H2O brine (70 wt% NaCl [equivalent])-silicate melt (starting composition of Qtz0.38Ab0.33Or0.29, anhydrous) assemblage at 800°C and 100 MPa. We determined an apparent equilibrium constant
  相似文献   

16.
The speciation of water in silicate melts   总被引:1,自引:0,他引:1  
Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model relates the proportions of molecular water and hydroxyl groups in melts via the following reaction describing the homogeneous equilibrium between melt species: H2Omolecular (melt) + oxygen (melt) = 2OH (melt). An equilibrium constant has been formulated for this reaction and species are assumed to mix ideally. Given an equilibrium constant for this reaction of 0.1–0.3, the proposed model can account for variations in the concentrations of molecular water and hydroxyl groups in melts as functions of the total dissolved water content that are similar to those observed in glasses. The solubility of molecular water in melt is described by the following reaction: H2O (vapor) = H2Omolecular (melt).These reactions describing the homogeneous and heterogeneous equilibria of hydrous silicate melts can account for the following observations: the linearity between fH2O and the square of the mole fraction of dissolved water at low total water contents and deviations from linearity at high total water contents; the difference between the partial molar volume of water in melts at low total water contents and at high total water contents; the similarity between water contents of vapor-saturated melts of significantly different compositions at high pressures versus the dependence on melt composition of water solubility in silicate melts at low pressures; and the variations of viscosity, electrical conductivity, the diffusivity of “water,” the diffusivity of cesium, and phase relationships with the total dissolved water contents of melts.This model is thus consistent with available observations on hydrous melt systems and available data on the species concentrations of hydrous glasses and is easily tested, since measurements of the concentrations of molecular water and hydroxyl groups in silicate glasses quenched from melts equilibrated over a range of conditions and total dissolved water contents are readily obtainable.  相似文献   

17.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

18.
Diffusion of water was experimentally investigated for melts of albitic (Ab) and quartz-orthoclasic (Qz29Or71, in wt %) compositions with water contents in the range of 0 to 8.5 wt % at temperatures of 1100 to 1200 °C and at pressures of 1.0 and 5.0 kbar. Apparent chemical diffusion coefficients of water (D water) were determined from concentration-distance profiles measured by FTIR microspectroscopy. Under the same P-T condition and water content the diffusivity of water in albitic, quartz-orthoclasic and haplogranitic (Qz28Ab38 Or34, Nowak and Behrens, this issue) melts is identical within experimental error. Comparison to data published in literature indicates that anhydrous composition only has little influence on the mobility of water in polymerized melts but that the degree of polymerization has a large effect. For instance, Dwater is almost identical for haplogranitic and rhyolitic melts with 0.5–3.5 wt % water at 850 °C but it is two orders of magnitude higher in basaltic than in haplogranitic melts with 0.2–0.5 wt % water at 1300 °C. Based on the new water diffusivity data, recently published in situ near-infrared spectroscopic data (Nowak 1995; Nowak and Behrens 1995), and viscosity data (Schulze et al. 1996) for hydrous haplogranitic melts current models for water diffusion in silicate melts are critically reviewed. The NIR spectroscopy has indicated isolated OH groups, pairs of OH groups and H2O molecules as hydrous species in polymerized silicate melts. A significant contribution of isolated OH groups to the transport of water is excluded for water contents above 10 ppm by comparison of viscosity and water diffusion data and by inspection of concentration profiles from trace water diffusion. Spectroscopic measurements have indicated that the interconversion of H2O molecules and OH pairs is relatively fast in silicate glasses and melts even at low temperature and it is inferred that this reaction is an active step for migration of water. However, direct jumps of H2O molecules from one cavity within the silicate network to another one can not be excluded. Thus, we favour a model in which water migrates by the interconversion reaction and, possibly, small sequences of direct jumps of H2O molecules. In this model, immobilization of water results from dissociation of the OH pairs. Assuming that the frequency of the interconversion reaction is faster than that of diffusive jumps, OH pairs and water molecules can be treated as a single diffusing species having an effective diffusion coefficient . The shape of curves of Dwater versus water content implies that increases with water content. The change from linear to exponential dependence of Dwater between 2 and 3 wt % water is attributed to the influence of the dissociation reaction at low water content and to the modification of the melt structure by incorporation of OH groups. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

19.
Ian Carmichael spent 45 years thinking about and working on the activities of components in silicate melts and their use to estimate physicochemical conditions at eruption and in the source regions of igneous rocks. These interests, principally in major components such as SiO2, led us to think about possible ways of determining the complementary activity coefficients of trace components in silicate melts. While investigating the conditions of accretion and differentiation of the Earth, a number of authors have determined the partitioning of trace elements such as Co, Ni, Mo and W between liquid Fe metal and liquid silicate. These data have the potential to provide activity information for a large number of trace components in silicate melts. In order to turn the partitioning measurements into activities, however, we need to know the activity coefficient of FeO, γFeO in the silicate. We obtained γFeO as a function of melt composition by fitting a simple model to 83 experimental data for which the authors had measured the FeO content of the silicate melt in equilibrium with metal (Fe-bearing alloy) at known fO2. The compositional dependence of γFeO is weak, but, when calculated in the system Diopside–Anorthite–Forsterite, it decreases towards the Forsterite apex. A similar approach for Ni, for which twice as many data are available, leads to similar composition dependence of activity coefficient and confirms the suggestion that γNiOFeO is almost constant over a wide range of silicate melt composition. The activity coefficients for FeO were used in conjunction with measured Mo and W partitioning between Fe-rich metal and silicate melt to estimate activity coefficients for trace MoO2 and WO3 dissolved in silicate melt. When combined with data on Mo- and W-saturated silicate melts a strong dependence of activity coefficient is observed. Calculated in the system Diopside–Anorthite–Forsterite, both MoO2 and WO3 exhibit similar behaviour to FeO and NiO in that activity coefficients decrease as Forsterite content increases. The effect is much larger for Mo and W, however, γMoO2 and γWO3 varying by factors of 20 and nearly 100, respectively, in this system. In order to illustrate the potential applications of the metal–silicate partitioning approach to determine the activity coefficients of volatile elements, we used it to determine activity coefficients of PbO, CuO0.5 and InO1.5 in a silica-saturated melt at 1,650 °C. We find values of 0.22, 3.5 and 0.02, respectively, indicating a strong dependence on cation charge. The value for CuO0.5 is in excellent agreement with experimental data of Holzheid and Lodders (Geochim Cosmochim Acta 65:1933–1951, 2001), which shows that the method is viable. When combined with thermodynamic data on the gas species, we find that Pb is the most volatile of the 3 elements under ‘normal’ terrestrial conditions of oxygen fugacity but that In should become the most volatile under strongly reducing conditions such as those of the solar nebula. The oxygen fugacity dependence of volatility has implications for the high relative abundance of In in silicate Earth. We conclude that metal–silicate partitioning experiments are a viable means for determining activities of trace components in silicate melts and are particularly useful if the metal of the element is unstable or volatile at igneous temperatures.  相似文献   

20.
In order to model the processes of formation of the highly alkaline (potassic) melts during the partial melting of the eclogite nodules in kimberlites, experiments on the melting of the model and natural eclogites in presence of the H2O-CO2 and H2O-CO2-KCl fluids at 5 GPa and 1200 and 1300°C are performed. A comparative analysis of the phase relations in the systems with H2O-CO2 and H2O-CO2-KCl demonstrate that KCl in the fluid equilibrated with eclogites intensifies their melting. It is related to both high Cl concentration in the forming silicate melt (2.0–5.5 wt %) and its enrichment in K2O owing to the K-Na exchange reactions with the immiscible chloride melt. Because of these reactions, the K2O/Cl ratio in the melts increases with the KCl content in the system and reaches 2.5–3.5 in the silicate melts coexisting with the immiscible chloride liquid. However, the ratio KCl/(H2O + CO2 + KCl) in the fluid does not influence on the ratio K2O/Cl in the melts. Thus, the solubility KCl in the melts, apparently, does not depend on presence of the H2O-CO2 fluid, at least, within the concentration range used in the experiments (up to 20 wt %). The experiments show that the deliberated chloride liquid is necessary to form the potassium-rich chlorine-bearing silicate melts during the eclogite melting. It corresponds to the KCl content in the system above 5 wt %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号