首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
海洋重力场特征参数在地球重力场逼近计算和海上测量优化设计中具有重要的应用价值。基于卫星测高重力在海域具有覆盖范围广且分布均匀的独特优势,提出了利用最新卫星测高重力数据集开展海洋重力场特征统计模型计算和分析的研究方案,给出了代表误差和协方差函数模型参数的计算公式,定义并研究了海洋广义布格重力异常的变化特征,提出了等精度和非等精度拟合经验协方差函数的计算模型。利用中国近海及西太平洋海区超过50万个5'×5'方块的1'×1'网格卫星测高重力异常数据,首次计算得到一组有代表性的中国周边海域重力场特征统计模型参数,较好地揭示了海洋重力场有别于陆地重力场的变化特征,利用海面船测重力数据对计算结果进行了可靠性检核,提出了相应的模型参数修正方案和使用建议。  相似文献   

2.
New algorithms have been derived for computing terrain connections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algorithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface have been developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem has been developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.  相似文献   

3.
随着中国深空测控技术的进步和深空探测计划的推进,木星探测计划已经进入日程,木星探测器的精密定轨和木星的引力场的解算是木星探测中的重要研究内容。首先给出了木星探测器的坐标系统和动力学模型,并利用已公布的朱诺号木星探测器精密星历数据进行验证,动力学拟合结果与参考星历的位置偏差在10 m量级,速度偏差小于6 mm/s;然后利用深空多普勒测量模型处理已经发布的朱诺号无线电测量数据进行精密定轨,结果与参考星历的差距在数百米量级;最后利用仿真数据验证引力场系数解算的可靠性,并利用朱诺号探测器4个近木点附近的实测数据解算引力场系数,得到了截至8阶的带谐项系数。  相似文献   

4.
重力地形改正是区域重力测量工作中的一个关键步骤,目前重力地形改正的主要挑战是如何快速地重建测站附近高精度的三维地形。本文提出了一种基于全景立体视觉和摄影测量技术的快速近区重力地形改正方法,设计和开发了相应的快速测图系统。为了使该系统硬件尽量小型化并满足精度需求,我们进行了系统的理论精度分析和设计优化。所开发的研究系统可以从获取的全景立体图像自动生成DEM并计算重力地形改正值。该系统已经过野外多站多种地形的实验验证,结果表明其效率和精度明显优于传统的野外测量方法。  相似文献   

5.
Satellite radar altimetry has been monitoring the earth’s oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original geodetic mission data suffer from degradation in quality and coverage close to the coast and in Polar Regions as well as the occasionally wrongly retracking of these, even in the open ocean. In order to improve the quality of these geodetic mission data and to derive a new improved global marine gravity field called DNSC08GRA, a new double retracking technique for analyzing the waveform data has been developed. Multiple retracking allows the system to retrack more data to increase the spatial coverage of the data. Subsequently, a second retracking run is used to enhance the SSH determination by using information from the first fitting to inform the second set of retrackers about smoothly varying sea state parameters. The development of the new global marine gravity field DNSC08GRA is described in this paper. Besides application of new retracking techniques the radar altimetry has been processed using EGM2008 as reference and augmented with ArcGP gravity data and laser altimetry from ICESat to close the Polar gap. DNSC08GRA is seen to perform significantly better than previous global marine gravity field like KMS02. The improvement in accuracy is better than 20% in general, but in coastal regions, the improvement is in many places of the order of 40–50% compared to older global marine gravity field KMS02.  相似文献   

6.
The determination of the local gravity field from sensors mounted in a fixed wing aircraft has long been a dream of geodesists and geophysicists. The progress in sensor technology during the last decade has brought its realization within reach and recent tests indicate that results at the level of a fewmGal are possible. To assess different sensor configurations and their effect on the resolution of the gravity field spectrum, a state model for motion in the gravity field of the earth is formulated. The resulting set of differential equations can accommodate first and second order gravity gradients, specific force, kinematic acceleration, vehicle velocity and position as input. It offers therefore a rather general framework for gravity field determination from a variety of kinematic sensors, such as gravity meters, gravity gradiometers, inertial systems, differentialGPS, laser altimeters and others. The derivation of the basic kinematic model and its linearization are given in detail, while sensor error models are discussed in a generic way. A few remarks on the modelling of gravity gradiometer measurements conclude the paper.  相似文献   

7.
8.
重力匹配辅助导航理论大都建立在离散场的基础上的,为了研究基于连续场重力匹配算法以克服传统匹配算法的局限,必须建立精度高且具有良好解析性质的局部重力异常场解析模型。利用斐波那契数列寻优方法对一维高斯样条函数插值进行最优化,在此基础上提出了基于斐波那契数列寻优的二维高斯样条函数逼近局部重力异常场方法。为了提高寻优算法运算速度,将二维准则函数解耦为X方向和Y方向两个独立的一维准则函数,分别采用斐波那契数列寻优方法对这两个准则函数进行寻优以获取X方向和Y方向最优参数,最终得到高精度逼近局部离散格网数据的局部重力异常场连续解析模型。仿真实验中采用五组不同的参数对变化范围为-51.185mGal~86.1819mGal的重力异常场进行逼近。从最后的仿真实验结果可以看出采用最优参数时逼近绝对误差均值达到0.00069,相对误差均值更达到10-6级,能较好的满足了匹配导航要求,其逼近精度较采用其它非最优参数时均有较大提高,由此验证了文中提出的重构算法有效性。  相似文献   

9.
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.  相似文献   

10.
A set of techniques was developed for automatically detecting tectonic lineaments from multi-source remotely-sensed data at various scales. The techniques include adaptive shading of grid data to enhance linear features, a segment-tracing algorithm to extract line segments from the shaded grid data, grouping of the segments by concatenating short segments, and connecting them by proximity and co-linearity criteria to form a lineament that represents significant tectonic structure. B-spline smoothing was adopted for lineament representation. Finally, a technique for assessing the orientations and styles of faulting (normal, reverse, and strike-slip types) was developed for use in characterizing the extrapolated fracture planes. The applicability of the developed techniques was examined using 30 arc-second topography/bathymetry grids, 1-min gravity anomaly grids, and 2-min total field magnetic intensity grids covering Egypt and its surroundings. Lineaments derived from data types so diverse in composition and from various depths corresponded well with the referenced tectonic features over much of the region. Prominent trends and faulting styles of lineaments provided important clues as to the timing of their development as well as strong support for a structural inheritance model. Results demonstrated the effectiveness of the developed techniques combined with integration of remotely-sensed data in detecting regional fracture systems accurately and in characterizing geodynamics over a long timeframe.  相似文献   

11.
Performance of a recently proposed technique for gravity field modeling has been assessed with data from the CHAMP satellite. The modeling technique is a variant of the acceleration approach. It makes use of the satellite accelerations that are derived from the kinematic orbit with the 3-point numerical differentiation scheme. A 322-day data set with 30-s sampling has been used. Based on this, a new gravity field model – DEOS_CHAMP-01C_70 - is derived. The model is complete up to degree and order 70. The geoid height difference between the DEOS_CHAMP-01C_70 and EIGEN-GRACE01S models is 14 cm. This is less than for two other recently published models EIGEN-CHAMP03Sp and ITG-CHAMP01E. Furthermore, we analyze the sensitivity of the model to some empirically determined parameters (regularization parameter and the parameter that controls the frequency-dependent data weighting). We also show that inaccuracies related to non-gravitational accelerations, which are measured by the on-board accelerometer, have a minor influence on the computed gravity field model.  相似文献   

12.
A detailed gravimetric geoid has been computed for the Nortwest Atlantic Ocean and Caribbean Sea area in support of the calibration and evaluation of the GEOS-3 altimeter. This geoid, computed on a 15’ x 15’ grid was based upon a combination of surface gravity data and the GSFC GEM-8 gravitational field model. This gravimetric geoid has been compared with passes of SKYLAB altimeter data recorded in the Atlantic Ocean, and three typical passes are presented. The relative agreement of the two data types is quite good with differences generally less than 2 meters for these passes. Sea surface manifestations of numerous short wavelength (≈ 100 km) oceanographic features indicated in the altimeter data are also confirmed by the gravimetric geoid.  相似文献   

13.
重力梯度卫星GOCE通过搭载静电式重力梯度仪,将全球静态重力场恢复至200阶以上。目前GOCE卫星已结束寿命,亟须发展下一代更高分辨率的卫星重力梯度测量来完善200~360阶的全球静态重力场模型。原子干涉型的重力梯度测量在空间微重力环境下可获得较长的干涉时间,因此具有很高的星载测量精度,是下一代卫星重力梯度测量的候选技术之一。本文针对未来更高分辨率全球重力场测量的科学需求,提出了一种适用于空间微重力环境下的原子干涉重力梯度测量方案,其梯度测量噪声可低至0.85mE/Hz1/2。文中对不同类型的卫星重力梯度测量方案进行了重力场反演精度的对比评估,仿真结果表明,相比于现有静电式卫星重力梯度测量,原子干涉型的卫星重力梯度测量有望将重力场的恢复阶数提升至252~290阶,对应的累积大地水准面误差7~8cm,累积重力异常误差3×10-5 m/s2。  相似文献   

14.
Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain independent external quality parameters and to assess the current performance of these models, a set of independent tests based on satellite orbit determination and geoid comparisons is applied. Both test methods can be regarded as complementary because they either investigate the performance in the long wavelength spectral domain (orbit determination) or in the spatial domain (geoid comparisons). The test procedure was applied to the three GOCE gravity field solutions and to a number of selected pre-launch models for comparison. Orbit determination results suggest, that a pure GOCE gravity field model does not outperform the multi-year GRACE gravity field solutions. This was expected as GOCE is designed to improve the determination of the medium to high frequencies of the Earth gravity field (in the range of degree and order 50 to 200). Nevertheless, in case of an optimal combination of GOCE and GRACE data, orbit determination results should not deteriorate. So this validation procedure can also be used for testing the optimality of the approach adopted for producing combined GOCE and GRACE models. Results from geoid comparisons indicate that with the 2 months of GOCE data a significant improvement in the determination of the spherical harmonic spectrum of the global gravity field between degree 50 and 200 can be reached. Even though the ultimate mission goal has not yet been reached, especially due to the limited time span of used GOCE data (only 2 months), it was found that existing satellite-only gravity field models, which are based on 7 years of GRACE data, can already be enhanced in terms of spatial resolution. It is expected that with the accumulation of more GOCE data the gravity field model resolution and quality can be further enhanced, and the GOCE mission goal of 1–2 cm geoid accuracy with 100 km spatial resolution can be achieved.  相似文献   

15.
16.
为解决CORS系统中GNSS高程受技术条件限制精度不高的问题,贵阳市进行了区域似大地水准面精化工作。本文论述了GNSS和水准网的布设及精度,使用了3 877个点重力数据和54个GNSS水准资料,以EIGEN03C地球重力场模型作为参考重力场,由第二类Helmert凝集法完成大地水准面计算,利用球冠谐调和分析方法将GNSS水准与重力似大地水准面联合求解得出的2'!2'格网似大地水准面,在高原高差地区其精度达到"0.010 m。  相似文献   

17.
A synthetic [simulated] Earth gravity model (SEGM) of the geoid, gravity and topography has been constructed over Australia specifically for validating regional gravimetric geoid determination theories, techniques and computer software. This regional high-resolution (1-arc-min by 1-arc-min) Australian SEGM (AusSEGM) is a combined source and effect model. The long-wavelength effect part (up to and including spherical harmonic degree and order 360) is taken from an assumed errorless EGM96 global geopotential model. Using forward modelling via numerical Newtonian integration, the short-wavelength source part is computed from a high-resolution (3-arc-sec by 3-arc-sec) synthetic digital elevation model (SDEM), which is a fractal surface based on the GLOBE v1 DEM. All topographic masses are modelled with a constant mass-density of 2,670 kg/m3. Based on these input data, gravity values on the synthetic topography (on a grid and at arbitrarily distributed discrete points) and consistent geoidal heights at regular 1-arc-min geographical grid nodes have been computed. The precision of the synthetic gravity and geoid data (after a first iteration) is estimated to be better than 30 μ Gal and 3 mm, respectively, which reduces to 1 μ Gal and 1 mm after a second iteration. The second iteration accounts for the changes in the geoid due to the superposed synthetic topographic mass distribution. The first iteration of AusSEGM is compared with Australian gravity and GPS-levelling data to verify that it gives a realistic representation of the Earth’s gravity field. As a by-product of this comparison, AusSEGM gives further evidence of the north–south-trending error in the Australian Height Datum. The freely available AusSEGM-derived gravity and SDEM data, included as Electronic Supplementary Material (ESM) with this paper, can be used to compute a geoid model that, if correct, will agree to in 3 mm with the AusSEGM geoidal heights, thus offering independent verification of theories and numerical techniques used for regional geoid modelling.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00190-005-0002-z  相似文献   

18.
在重力聚焦反演基础上提出多尺度源网聚焦反演算法.首先,对源网进行粗网格剖分,用共轭梯度法求解粗网格源网模型的聚焦解,直到拟合差下降至设定的数值;然后,将粗网格得到的密度映射到细网格;最后,以细网格模型为初始模型,进一步迭代直到拟合差下降至符合反演要求.模型试验结果显示,相比于固定源网反演,多尺度源网聚焦反演迭代的总耗时...  相似文献   

19.
基于最小二乘配置误差估计公式,建立了重力异常格网数据的分辨率和精度与重力异常内插值精度的关系,提出了在给定插值精度时反推已知格网数据的分辨率和精度的方法。以EGM2008重力场模型为例,在不同分辨率和精度条件下进行重力异常插值实验。实验结果与本文方法的计算结果基本一致,表明该方法具有一定的可行性。  相似文献   

20.
地表观测的重力位场是地形质量、浅部地质结构产生的剩余重力异常和深部地质构造产生的区域重力异常的叠加效应。基于尺寸可变的滑动窗口的二维低阶多项式拟合算法和格网距离(到中心点)倒数的定权规则在空间域对地面观测的重力位场数据进行了不同深度层的区域-剩余异常分离。这克服了常规算法仅在水平方向上区分不同异常空间分布及垂直方向上定性分离的缺陷。并利用构建的模型重力数据和实测重力位场数据分别进行解算,数值结果验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号