首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
徐栋夫  李栋梁  王慧 《大气科学》2014,38(2):373-385
本文使用我国西南地区97站1960~2009年逐日资料,计算了考虑降水和气温的干湿指数,分析了西南地区秋季及9、10、11月干湿指数的时空变化特征。采用相似方法,构造了综合相似指数,对历年干湿分布进行分类,并给出了秋季各月各类干湿出现的概率。此外还使用再分析资料分月探讨了干湿分布主要类型异常年的大气环流特征。分析结果表明:西南地区秋季存在显著的干旱化趋势,且该地区干湿变化存在全区一致、东西相反和南北相反的特征。根据干湿变化主要模态的空间型,利用综合相似指数可以将历年秋季干湿分为全区一致偏干型、全区一致偏湿型、东湿西干型、东干西湿型、南湿北干型、南干北湿型和非典型型,共7类。全区干湿一致型出现的次数最多(不低于50%),东西相反型次之(约25%),南北相反型较少(约15%),而出现非典型型次数极少(不足10%)。从季节内尺度来看,全区偏干(湿)的持续性较差,但10月份的东部偏湿区域则有较大几率(不低于50%)在下个月扩展到整个区域。全区偏干型异常年,东亚大槽偏弱或偏东,冷空气南侵困难;南海上空低层维持一个异常的气旋环流,西南地区暖湿气流输送偏弱;西太平洋副高偏强、西伸,南亚高压面积偏大,与西太副高重叠,西南地区长期受高压控制。这种异常环流形势的维持,使得该地区天气晴朗少雨,气温偏高,持续干旱。偏湿型异常年则基本呈相反的环流特征。而西南地区东、西部上空异常的垂直运动和东部低层的南、北风异常是造成东湿(干)西干(湿)型异常的重要原因。  相似文献   

2.
Climate in mainland China can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4--5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed.  相似文献   

3.
The dry-wet variability in western China and its spatiotemporal structure during the last 4-5 centuries was examined using 24 climate proxies from sediments, ice cores, historical documents, and tree rings. Spatial patterns and temporal evolutions of dryness and wetness were not only extracted from the proxy data using rotated empirical orthogonal function (REOF) analysis for the last 4 centuries, but also for instrumental data in the last 40 years. The leading five REOF modes indicate that 5 dry-...  相似文献   

4.
Drought events have become more frequent and intense over East Asia in recent decades, leading to hugesocioeconomic impacts. Although the droughts have been studied extensively by cases or for individual regions, theirleading variability and associated causes remain unclear. Based on the Standardized Precipitation Evapotranspiration Index(SPEI) and ERA5 reanalysis product from 1979 to 2020, this study evealuates the severity of spring droughts in East Asiaand investigates their variations and associated drivers. The results indicate that North China and Mongolia have ex perienced remarkable trends toward dryness during spring in recent decades, while southwestern China has witnessed anopposite trend toward wetness. The first Empirical Orthogonal Function mode of SPEI variability reveals a similarseesawing pattern, with more severe dryness in northwestern China, Mongolia, North China, South Korea, and Japan butincreased wetness in Southwestern China and southeast Asia. Further investigation reveals that the anomalously dry (wet)surface in North (Southwestern) China is significantly associated with anomalously high (low) temperature, less (more)precipitation, and reduced (increased) soil moisture during the previous winter and early spring, regulated by an anomalousanticyclone (cyclone) and thus reduced (increased) water vapor convergence. The spring dry-wet pattern in East Asia isalso linked to cold sea surface temperature anomalies in the central-eastern Pacific. The findings of this study haveimportant implications for improving the prediction of spring drought events in East Asia.  相似文献   

5.
南涝北旱的年代气候特点和形成条件   总被引:10,自引:3,他引:10       下载免费PDF全文
通过研究最近50年我国夏季降水分布的年代际及年际气候变化特征,以及对20世纪90年代至今夏季旱涝趋势的对比分析,讨论了夏季主要雨带位置南移的气候趋势,以及亚洲大陆高压、ENSO事件对夏季降水的影响关系。结果表明,20世纪90年代后期开始我国夏季旱涝分布气候态发生较大的变化,这可能预示夏季进入南涝北旱的年代气候时期。这些结果对于降水的年代气候预测和短期气候预测都具有重要意义。  相似文献   

6.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

7.
Anthropogenic influences on regional climate and water resources over East Asia are simulated by using a regional model nested to a global model. The changes of land use/land cover (LULC) and CO2 concentration are considered. The results show that variations of LULC and CO2 concentration during the past 130 years caused a warming trend in many regions of East Asia. The most remarkable temperature increase occurred in Inner Mongolia, Northeast and North China, whereas temperature decreased in Gansu Province and north of Sichuan Province. LULC and CO2 changes over the past 130 years resulted in a decreasing trend of precipitation in the Huaihe River valley, Shandong Byland, and Yunnan-Guizhou Plateau, but precipitation increased along the middle reaches of the Yangtze River, the middle reaches of the Yellow River, and parts of South China. This pattern of precipitation change with changes in surface evapotranspiration may have caused a more severe drought in the lower reaches of the Yellow River and the Huaihe River valley. The drought trend, however, weakened in the mid and upper reaches of the Yellow River valley, and the Yangtze River valley floods were increasing. In addition, changes in LULC and CO2 concentration during the past 130 years led to adjustments in the East Asian monsoon circulation, which further affected water vapor transport and budget, making North China warm and dry, the Sichuan basin cold and wet, and East China warm and wet.  相似文献   

8.
使用区域气候模式RegCM4.4,对全球模式CSIRO-Mk3.6.0在RCP4.5情景下的气候变化试验结果(1950-2100年)在东亚地区进行25 km动力降尺度试验,比较了CSIRO-Mk3.6.0和RegCM4.4预估中国地区的21世纪气候变化。结果表明,两个模式预估未来中国地区气温持续升高,升温幅度具有区域性特征,RegCM4.4预估区域平均升温幅度低于CSIRO-Mk3.6.0,但二者年际波动基本一致。两个模式预估未来降水在中国西部以持续增加为主,东部则表现出较大的不一致性,预估区域平均年降水量变化不大,呈现冬季明显增加,夏季微弱减少的特点。此外,为了解区域气候模式对中国降水预估的不确定性,对本研究和以往RegCM3使用相同分辨率模拟得到的未来降水预估进行了对比,两个区域模式预估中国西部大部分地区未来降水一致性增加,东部存在明显不一致(冬季中、高纬除外)。  相似文献   

9.
黄荣辉  陈际龙  刘永 《大气科学》2011,35(4):589-606
本文利用1958~2000年ERA-40再分析每日资料和我国516台站降水资料以及EOF方法,分析了我国东部季风区夏季降水异常主模态的年代际变化特征及其与东亚上空水汽输送通量时空变化的关系.分析结果表明了我国东部季风区夏季降水的时空变化存在两种主模态:第1主模态不仅显示出明显的准两年周期振荡的年际变化特征且也有明显的年...  相似文献   

10.
利用中国1961—2014年逐日降水观测等资料,分析了西南地区的干湿季变化特征。结果表明:西南地区东部和西北部最早进入湿季;干季由四川盆地、贵州南部开始。西南中东部以及南部等地的湿季长度较长,干季则与之相反。干湿季开始日期以及干湿季长度均具有明显的年代际变化特征,在1970年代中期到1980年代发生了气候突变,呈现湿季长度变短,干季变长的趋势。湿季降水呈现东南多、西北少的特征,并表现出中东部减少,西部增加的趋势;干季降水则表现为东多西少的特点,在东部呈增加,在四川等地呈减少趋势。进一步分析表明:湿季异常偏湿(干)年,开始日期易偏早(晚),结束易偏晚(早),长度偏长(短);干季开始异常偏早(晚)年,干季长度长(短),干季略偏湿(干);太平洋、印度洋海温异常影响东亚大气环流的异常是造成西南地区干湿季出现异常的主要原因。  相似文献   

11.
The regional climate model (RegCM3), developed by the Abdus Salam International Centre for Theoretical Physics and nested in one-way mode within the latest version of Community Climate System Model from the National Center for Atmospheric Research, is used to conduct a set of experiments to examine its capability of climate simulation for the past 50 years and to explore possible changes in extreme precipitation (EP) in the next 100 years under the A1B scenario. Compared with the observation from the Climate Research Unit at the University of East Anglia and CPC Merged Analysis of Precipitation, RegCM3 reasonably reproduces the spatiotemporal distributions of precipitation and EP in eastern China. Based on the present-day analysis, this study examines the changes in monsoonal precipitation over eastern China in mid- and late-21st century relative to the reference period of 1970-1999. It is found that the precipitation will increase over the middle and lower reaches of the Yangtze River and areas to its north, and decrease over coastal areas to its south, especially in late-21st century. The various indices reflecting extreme events showed that the EP will enhance 10%-15% over the middle and lower reaches of the Yangtze River and areas to its north, and weaken over the areas to its south. The summer monsoon will strengthen and shift northwards under SERS A1B, bringing more water vapor and energy from the Indian Ocean and South China Sea for precipitation and eventually more precipitation over northern China.  相似文献   

12.
将公用气候系统模式与区域气候模式单向嵌套(CCSM3-RegCM3),分别对1950—1999年和2000—2099年进行大气温室气体中等排放情景(A1B)下中国区域高分辨率连续数值模拟试验,以分析其对我国华东降水量时空变化的模拟能力,探讨未来华东地区极端降水的可能变化。与CRU、CMAP实际降水观测及NCEP再分析资料驱动的RegCM3模拟结果的对比显示,模式系统较好地重现了我国华东降水水平分布、日变化以及极端降水指数变化特征。在此基础上,分析了A1B情景下21世纪中期和后期降水以及东亚夏季风的可能变化。(1)未来中国长江中下游及其以北地区降水普遍增加,以南沿海地区降水相对变化不明显甚至减少,21世纪末期相对21世纪中期更为明显;(2)极端降水指数显示未来长江中下游及其以北地区极端降水增加10%~15%,干旱程度减弱,而南部沿海地区小范围极端降水减少,最大持续无雨期天数增加最大可达30%;(3)未来东亚夏季风偏强,尤其是西南气流加强,致使夏季风明显北推,这是导致长江中下游及其以北地区降水显著增加的主要原因。  相似文献   

13.
根据全球气溶胶气候模式GEM-AQ/EC的1995~2004年模拟,分析了青藏高原大气黑碳气溶胶的来源、传输及沉降季节特征。研究表明:青藏高原黑碳气溶胶主要来自自由对流层和大气边界层的输送。相对于自由对流层的黑碳输送,紧邻青藏高原的南亚、东亚以及东南亚大气边界层的输送更有效,它形成了青藏高原由北向南、自西往东黑碳气溶胶浓度和沉降明显递增的基本分布形态。横跨欧亚大陆自由对流层的黑碳气溶胶由西向东向青藏高原的输送全年不变,夏季输送路径最北但强度最弱,冬季路径最南而强度最强。大气边界层黑碳气溶胶的输送受控于亚洲季风环流变化,来自南亚的黑碳气溶胶在春季越过孟加拉湾传输进入高原东南部,夏季则可翻越喜马拉雅山抵达青藏高原南部腹地;同时我国中部排放的黑碳气溶胶也在东亚夏季风向北扩展中驱动它从东向西往青藏高原东北部传输。从秋季到冬季,随着夏季风撤退,南亚黑碳源区向青藏高原传输衰退,东亚冬季风的反气旋性环流的南侧及西南侧的偏东风携带秋季我国东南部源区和冬季东南亚源区黑碳气溶胶向青藏高原东南部传输。受青藏高原明显的暖湿季和干冷季气候影响,干湿沉降分别主导了青藏高原冬季和夏季黑碳沉降,夏季青藏高原黑碳气溶胶沉降总量大多超过8~10 kg·km-2,在高原东北部的最高值超过40 kg·km-2。冬季青藏高原黑碳气溶胶沉降量最低,大部地区黑碳沉降低于5 kg·km-2。青藏高原黑碳沉降的冬夏季节相差约为2~8倍。  相似文献   

14.
Ethiopian decadal climate variability is characterized by application of singular value decomposition to gridded rainfall data over the period 1901–2007. Two distinct modes are revealed with different annual cycles and opposing responses to regional and global forcing. The northern zone that impacts the Nile River and underlies the tropical easterly jet has a unimodal rainy season that is enhanced by Atlantic Multidecadal Oscillation warm phase. This rainfall mode is linked with the Atlantic zonal overturning circulation and exhibits 10–12-year cycles through much of the twentieth century. The southern zone has a bimodal rainy season that is enhanced by Pacific Decadal Oscillation cool phase and the southern meridional overturning circulation. Multiyear wet and dry spells are characterized by sympathetic responses in the near-equatorial trough extending from Central America across the African Sahel to Southeast Asia. The interaction of Walker and Hadley cells over Africa appears to be a key feature that modulates Ethiopian climate at decadal frequency through anomalous north–south displacement of the near-equatorial trough.  相似文献   

15.
基于"黄河源区玛曲-若尔盖土壤温湿监测网络"自2008年观测以来至2017年的观测资料,通过分析多层土壤湿度异常百分比指数SMAPI(Soil Moisture Anomaly Percentage Index),捕捉10年来该地区的干湿演变过程,并利用再分析数据资料NECP FNL(National Centers ...  相似文献   

16.
长江中下游地区冬夏干湿韵律特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析中国160站1952—2013年的月平均降水观测资料,揭示了长江中下游地区冬季和夏季降水间存在显著的韵律现象,即当该地区冬季降水异常偏少(偏多)时,次年夏季降水也趋于异常偏少(偏多),这里称之为干(湿)韵律现象。对干、湿韵律年大气环流背景的分析结果显示,干韵律年和湿韵律年对应的环流形势基本相反:在干(湿)韵律年冬季,东亚地区500 hPa位势高度距平呈现西高东低(东高西低)的分布型,中国南方东部主要受偏北(南)风异常控制,这不利(有利)于低纬度暖湿气流向长江中下游地区输送,导致该地区冬季降水异常偏少(多);在次年夏季,西北太平洋副热带高压异常偏弱(强),不利(有利)于西南暖湿气流向中国东部地区输送,使得长江中下游地区夏季降水也异常偏少(多)。研究进一步指出,长江中下游地区的冬夏干、湿韵律现象与东亚冬夏季风活动的强度密切相关。干、湿韵律现象多在东亚冬夏季风强度变化一致的情况下出现:冬、夏季风一致偏强时多导致干韵律现象,而一致偏弱时易导致湿韵律现象。  相似文献   

17.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.  相似文献   

18.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

19.
大气环流系统组合性异常与极端天气气候事件发生   总被引:2,自引:0,他引:2       下载免费PDF全文
根据2008年1月我国南方发生的持续严重雨雪冰冻灾害、1998年长江流域的特大洪涝灾害和2009/2010年冬季云南的极端干旱灾害的分析结果,再次强调指出,对于一些小概率的极端天气气候事件的发生,大气环流系统的组合性异常起着极其重要的作用。对于2008年的严重雨雪冰冻灾害的发生,多个大气环流系统的组合性异常包括:乌拉尔山阻塞高压和贝加尔湖-巴尔喀什湖的横槽,这为不断有冷空气从西路向南爆发提供了条件;东亚和日本地区的高度正异常使得北方冷空气的势力不是很强,适于锋面在我国南岭及其以北地区较长时间停留,为持续降水确立了背景;西太平洋副高偏强和偏西也对冷空气的向南推进起了阻挡作用;印-缅槽的持续偏强和西太平洋副高的偏强共同使暖湿空气源源不断地输送到华南地区,有利持续降水的发生,为冰冻造成了条件。对于1998年夏季长江流域的特大洪涝的发生,多个环流系统的异常包括:夏季西南季风涌的活动,西太平洋副热带高压活动,北方冷空气活动和青藏高原对流系统东传的共同作用。对于2009/2010年冬季云南的极端干旱灾害的发生,多个环流系统的异常包括:对流层高层中东地区副热带西风急流减弱,影响Rossby波的活动,不利于青藏高原-孟加拉湾槽的建立;西太平洋副热带高压偏强、位置略为偏南,对低层水汽输入云南起到抑制作用;NAO的负异常所导致的遥相关波列异常,使得东亚北方冷空气活动偏东,不易到达云南地区,还使得南支槽偏弱,暖湿气流也不易到达云南地区。ENSO虽然对中国天气气候变化有相当重要的影响,但并非每次异常天气气候事件的发生都是它的直接影响。对于ENSO影响必须具体分析,才能决定它在异常事件、特别是极端天气气候事件中的确切作用。  相似文献   

20.
Observations from several data centers together with a categorization method are used to evaluate the IPCC AR4 (Intergovernmental Panel on Climate Change, the Fourth Assessment Report) climate models' performance in simulating the interdecadal variations of summer precipitation and monsoon circulation in East Asia. Out of 19 models under examination, 9 models can relatively well reproduce the 1979-1999 mean June-July-August (JJA) precipitation in East Asia, but only 3 models (Category-1 models) can capture the interdecadal variation of precipitation in East Asia. These 3 models are: GFDL-CM2.0, MIROC3.2 (hires), and MIROC3.2 (medres), among which the GFDL-CM2.0 gives the best performance. The reason for the poor performance of most models in simulating the East Asian summer monsoon interdecadal variation lies in that the key dynamic and thermal-dynamic mechanisms behind the East Asian monsoon change are missed by the models, e.g., the large-scale tropospheric cooling and drying over East Asia. In contrast, the Category-1 models relatively well reproduce the variations in vertical velocity and water vapor over East Asia and thus show a better agreement with observations in simulating the pattern of "wet south and dry north" in China in the past 20 years.
It is assessed that a single model's performance in simulating a particular variable has great impacts on the ensemble results. More realistic outputs can be obtained when the multi-model ensemble is carried out using a suite of well-performing models for a specific variable, rather than using all available models. This indicates that although a multi-model ensemble is in general better than a single model, the best ensemble mean cannot be achieved without looking into each member model's performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号