首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Annually averaged global mean land air temperature and sea surface temperature (SST) combined, and global mean SST alone share similar fluctuations. We examine contributions by modes of SST variability in the global mean SST based on a new version (version 3) of global sea-ice and SST (GISST3). Besides a trend mode, the dominant modes are El Niño-Southern Oscillation (ENSO), interhemispheric oscillation, and North Pacific oscillation. Statistics over the period of 1880–1997 show that excluding a warming trend the fluctuation on interannual (IA) and decadal-interdecadal (DID) time scales is dominated by IA ENSO and DID ENSO-like variability. However, the contribution by IA ENSO cycles experiences significant fluctuations, and there appears to be strong modulations by ENSO-like variability on DID or longer time scales: during several decade-long periods, when DID ENSO-like variability raises the temperature in the equatorial eastern Pacific, the contribution by IA ENSO cycles weakens to an insignificant level. The latest example of such modulation is the period since about 1980; despite the exceptional strength of El Niño events, the contribution by IA ENSO cycles weakens, suggesting that the exceptional strength is a consequence of superposition of IA El Niño events, a warming phase of DID ENSO-like variability, and possibly an ENSO-like warming trend.  相似文献   

2.
 Understanding natural atmospheric decadal variability is an important element of climate research, and here we investigate the geographic and seasonal diversity in the balance between its competing sources. Data are provided by an ensemble of multi-decadal atmospheric general circulation model experiments, forced by observed sea surface temperatures (SSTs), and verified against observations. First, the nature of internal atmospheric variability is studied. By assessing its spectral character, we refute the idea that internal modes may persist or oscillate on multi-annual time-scales, either through mechanisms purely internal to the atmosphere, or via coupling to the land surface; instead, they behave as a white noise process. Second, and more importantly, the role of oceanic forcing, relative to internal variability, is investigated by extending the ‘analysis of variance’ technique to the frequency domain. Significance testing and confidence intervals are also discussed. In the tropics, atmospheric decadal variability is usually dominated by oceanic forcing, although for some regions less so than at interannual time-scales. A moderate oceanic impact is also found for some extratropical regions in some seasons. Verification against observed mean sea-level pressure (MSLP) data suggests that many of these influences are realistic, although some model errors are also revealed. In other mid- and high-latitude regions, local simulated decadal variability is dominated by random processes, i.e. the integrated effects of chaotic weather systems. Third, we focus on the mechanisms of decadal variability in two specific regions (where the model is well behaved). Over the tropical Pacific, the relative impact of SSTs on decadal MSLP is strongly seasonal such that it peaks in September to November (SON). This is explained by noting that the model atmosphere is responsive to SSTs a little farther west in SON than it is in other seasons, and here it picks up relatively more decadal power from the ocean (the western Pacific being less dominated by ENSO time-scales), causing atmospheric ‘signal-to-noise ratios’ to be enhanced at decadal timescales in SON. Over southern North America, a strong SST impact is found in summer and autumn, resulting in an upward trend of MSLP over recent decades. We suggest this is caused by decadal SST variability in the Caribbean (and to some extent the tropical northeast Pacific in summer), which induces anomalous convective heating over these regions and hence the wider MSLP response. Received: 30 November 1998 / Accepted: 22 April 1999  相似文献   

3.
Summary In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO’s influence on the interannual sea-surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSO’s influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3–5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin-wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east–west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.  相似文献   

4.
Summary Based on analysis of NCEP reanalysis data and SST indices of the recent 50 years, decadal changes of the potential predictability of ENSO and interannual climate anomalies were investigated. Autocorrelation of Nino3 SST anomalies (SSTA) and correlation between atmospheric anomalies fields and Nino3 SSTA exhibit obvious variation in different decades, which indicates that Nino3 SSTA-related potential predictability of ENSO and interannual climate anomalies has significant decadal changes. Time around 1977 is not only a shift point of climate on the interdecadal time scale but also a catastrophe point of potential predictability of ENSO and interannual climate. As a whole, ENSO and the PNA pattern in boreal winter are more predictable in 1980s than in 1960s and 1970s, while the Nino3 SSTA-related potential predictability of the Indian monsoon and the East Asian Monsoon is lower in 1980s than in 1960s and 1970s. Received October 19, 1999 Revised December 30, 1999  相似文献   

5.
In this study, the retrospective predictions of ENSO (El Niño and Southern Oscillation) were performed for the period from 1881 to 2000 using a hybrid coupled model, which is an ocean general circulation model coupled to a linear statistical atmospheric model, and using a newly developed initialization scheme of SST assimilation by Ensemble Kalman Filter. With the retrospective predictions of the past 120 years, some important issues of ENSO predictability (measured by correlation and RMSE skills of NINO3 sea surface temperature anomaly index) were studied including decadal/interdecadal variations in ENSO predictability and the mechanisms responsible for these variations. Emphasis was placed on investigating the relationship between ENSO predictability and various characteristics of ENSO system such as the signal strength, the irregularity of periodicity, the noise and the nonlinearity. It is found that there are significant decadal/interdecadal variations in the prediction skills of ENSO during the past 120 years. The ENSO events were more predictable during the late nineteenth and the late twentieth centuries. The decadal/interdecadal variations of prediction skills are strongly related to the strength of sea-surface temperature anomaly (SSTA) signals, especially to the strength of SSTA signals at the frequencies of 2–4 year periods. The SSTA persistence, dominated by SSTA signals at frequencies over 4-year periods, also has a positive relationship to prediction skills. The high-frequency noise, on the other hand, has a strong inverse relationship to prediction skills, suggesting that it also probably plays an important role in ENSO predictability.  相似文献   

6.
1. IntroductionPacific Decadal Oscillation (PDO) is a long-termENSO-like variability of the North Pacific. It can becharacterized by the first principal component of EOFof the North Pacific SST (Zhu and Yang, 2003; Tren-berth, 1990; Yang and Zhang, 2003). ENSO is thestrongest signal of annular change of global climatesystem (Trenberth, 1997). The spatial pattern of PDOis a wedge similar to El Nino. In the cool (warm)phases of PDO, the central and northwest Pacific is ofwarm (co…  相似文献   

7.
Summary The result of a 100-year integration of a coupled ocean-atmosphere general circulation model (CGCM) is analyzed, and compared with that of a 25-year integration of the corresponding uncoupled atmospheric general circulation model (AGCM) and observed data. The large-scale circulation patterns of mean climate state simulated by the CGCM are in good agreement with the observed ones, although differences exit in the positions and intensities between the simulated and the observed patterns. Having compared the standard deviations of monthly mean sea level pressure simulated by the CGCM to those by the AGCM, we found that the interaction between ocean and atmosphere mainly increases the interannual variability in the tropics especially in summer. The CGCM can also produce El Niño and Southern Oscillation (ENSO) events, whereas the AGCM cannot reproduce the main features of the Southern Oscillation. This implies that the air-sea interaction may be a principal mechanism for the occurrence of ENSO phenomena. The fundamental features of simulated regional climates are also analyzed. The CGCM can reproduce principal characteristics of surface air temperature and precipitation at five selected typical regions (desert region, plain region, monsoon region etc.). The distributions of annual mean surface ait temperature and precipitation in East Asia can also be reasonably simulated.With 9 Figures  相似文献   

8.
利用中等复杂程度的2.5层海洋模式和大气环流模式ECHAM4组成的海气耦合模式,模拟分析了热带太平洋和印度洋的气候变化以及年际变化特征。该模式较好地模拟了ENSO现象的空间分布及其不规则的周期变化特征,以及热带印度洋的主要变化特征。通过数值试验,初步研究了太平洋耦合过程对印度洋年际变化的影响。结果显示,当存在太平洋耦合过程时,模拟的印度洋偶极子(IOD)正(负)事件的发生频率比无太平洋耦合情形时有所减少(增加)。该变化是太平洋耦合变量通过海气耦合过程对印度洋海表面平均风场进行调整,进而引起热带印度洋温跃层深度东西梯度改变的结果。  相似文献   

9.
ENSO循环年代际变化及其数值模拟   总被引:2,自引:1,他引:1  
梁晓妮  俞永强  刘海龙 《大气科学》2008,32(6):1471-1482
从20世纪70年代后期的观测资料分析中显示了全球气候的年代际变化, 同时也表现在热带太平洋上最重要的海气耦合现象ENSO的年代际变化上。本文利用中国科学院大气物理研究研究所 (IAP) 大气科学和地球流体力学数值模拟国家重点实验室 (LASG) 的气候系统海洋模式 (简称LICOM), 对ENSO的年际以及年代际变率进行模拟, 结果表明LICOM基本能够模拟出ENSO年际变化的特征, 通过对海洋上层热含量的计算以及对热量和质量输送的变化分析, 能够看到模式中ENSO循环中的反馈机制与理论研究的结论是一致的。同时, 作者还发现模式能够重现ENSO循环的年代际变化特征, 例如周期、 传播方向和冷暖事件不对称性等特征的模拟也基本接近观测事实, 其中重点分析了冷暖事件的不对称性与非线性加热 (NDH) 之间的关系, 进一步分析还发现ENSO的强度、 不对称性与海洋内部的非线性过程之间在年代际尺度上也存在密切的关系。但是, 模式模拟与观测结果之间仍然存在着一定的误差, 模式有待于进一步改进。  相似文献   

10.
The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.  相似文献   

11.
The overall skill of ENSO prediction in retrospective forecasts made with ten different coupled GCMs is investigated. The coupled GCM datasets of the APCC/CliPAS and DEMETER projects are used for four seasons in the common 22 years from 1980 to 2001. As a baseline, a dynamic-statistical SST forecast and persistence are compared. Our study focuses on the tropical Pacific SST, especially by analyzing the NINO34 index. In coupled models, the accuracy of the simulated variability is related to the accuracy of the simulated mean state. Almost all models have problems in simulating the mean and mean annual cycle of SST, in spite of the positive influence of realistic initial conditions. As a result, the simulation of the interannual SST variability is also far from perfect in most coupled models. With increasing lead time, this discrepancy gets worse. As one measure of forecast skill, the tier-1 multi-model ensemble (MME) forecasts of NINO3.4 SST have an anomaly correlation coefficient of 0.86 at the month 6. This is higher than that of any individual model as well as both forecasts based on persistence and those made with the dynamic-statistical model. The forecast skill of individual models and the MME depends strongly on season, ENSO phase, and ENSO intensity. A stronger El Niño is better predicted. The growth phases of both the warm and cold events are better predicted than the corresponding decaying phases. ENSO-neutral periods are far worse predicted than warm or cold events. The skill of forecasts that start in February or May drops faster than that of forecasts that start in August or November. This behavior, often termed the spring predictability barrier, is in part because predictions starting from February or May contain more events in the decaying phase of ENSO.  相似文献   

12.
LI Chun  MA Hao 《大气科学进展》2012,29(6):1129-1141
In this study,the relationship between El Nin o-Southern Oscillation(ENSO) and winter rainfall over Southeast China(SC) is demonstrated based on instrumental and reanalysis data.The results show that ENSO and SC winter rainfall(ENSO-SC rainfall) are highly correlated and intimately coupled through an anomalous high pressure over the northwestern Pacific.In mature phase,El Nin o(La Nin a) events can cause more(less) rainfall over SC in winter.Due to the persistence and spring barrier of ENSO,SC winter rainfall has potential predictability of about half a year ahead with ENSO as a predictor.Besides,the ENSO-SC rainfall relationship exhibits decadal variability,closer before the early 1970s(0.47) and after the early 1990s(0.76),but weaker(0.12) between these times.In different periods,atmospheric teleconnection patterns have large differences and the predictability of SC winter rainfall also changes dramatically.For the most recent 20 years,the ENSO-SC rainfall relationship is closest and the prediction of SC winter rainfall anomalies based on ENSO is most creditable.In addition,the causes and mechanisms of the decadal modulation of the relationship between ENSO and SC winter rainfall need to be further studied.  相似文献   

13.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

14.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

15.
Interannual to decadal variability of European summer drought and its relationship with global sea surface temperature (SST) is investigated using the newly developed self calibrated Palmer drought severity index (scPDSI) and global sea surface temperature (SST) field for the period 1901–2002. A European drought severity index defined as the average of scPDSI over entire Europe shows quasiperiodic variations in the 2.5–5 year band as well as at 12–13 years suggesting a possible potential predictability of averaged drought conditions over Europe. A Canonical Correlation Analysis between summer scPDSI anomalies over Europe and global SST anomalies reveals the existence of three modes of coupled summer drought scPDSI patterns and winter global SST anomalies. The first scPDSI-SST coupled mode represents the long-term trends in the data which manifest in SST as warming over all oceans. The associated long-term trend in scPDSI suggests increasing drought conditions over the central part of Europe. The second mode is related to the inter-annual ENSO and decadal PDO influence on the European climate and the third one captures mainly the drought pattern associated to Atlantic Multidecadal Oscillation. The lag relationships between winter SST and summer drought conditions established in this study can provide a valuable skill for the prediction of drought conditions over Europe on interannual to decadal time scales.  相似文献   

16.
A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.  相似文献   

17.
In this study,we investigate the decadal variability of subsurface ocean temperature anomaly(SOTA)in the tropical Pacific and associated anomalous atmospheric circulation over Asia-North Pacific-North America by analyzing 50 years of atmosphere-ocean data from the National Center for Environmental Prediction(NCEP)reanalysis project and Simple Ocean Data Assimilation(SODA).Relationship between the ENSO-Like variability and climate of China is also revealed.The results show that the decadal variability of tropical Pacific SOTA has two dominant ENSO-like modes:the primary mode is an ENSO-Like mature phase pattern,and the second mode is associated with the ENSO-like transition(developing or decaying)phase.These two modes consist of a cycle of ENSO-Like variability,which exhibits a quasi-40a fluctuation,superimposed with an oscillation of a 13a period.The ENSO-Like variability in the tropical Pacific influences the atmosphere system at the mid-and higher-latitudes and subtropical regions,resulting in decadal variability of south wind over North China,the East Asian monsoon and climate of China.During the mature phase of El Ni o-Like variability,the anomalous north wind prevails over the north part of China and the East Asian monsoon weakens,with little rain in North China but much rain in the middle-and lower-reaches of the Yangtze River.With El Ni o-Like decaying(La Ni a-Like developing),anomalous northerly wind also prevails over North China,then the East Asian monsoon weakens with drought occurring in North China.The situation during the La Ni a-Like variability is the opposite.The pattern of anomalous climate of China is primarily dominated by the first ENSO-like variability,while the second mode can modulate the contribution of the first one,depending on whether its phase agrees with that of the first mode.The climate shift in China around 1978 and successive occurrence of drought for more than 20 years in North China are primarily induced by the first two ENSO-like variabilities.The latest La Ni a-Like phase starts from 1998 and will presumably end around 2018.It is expected that more rainfall would be in North China and less rainfall would appear in the middle-and lower-reaches of the Yangtze River valley during this period.  相似文献   

18.
By using the wavelet transform method,the ENSO (2-7 a) signal and the decadal variability (8-20 a) are filtered out from the long-term SST data sets in order to investigate characteristics of the decadal variability and its impact on the ENSO.It is found that there are two different kinds of decadal SSTA modes-horseshoe and horse saddle patterns in the tropical Pacific.The horseshoe pattern represents that the decadal SSTA variability in the central Pacific is in phase with that in the eastern Pacific.The horse saddle pattern is named that they are out of phase.The former constituted the decadal variability before 1990s and the latter mainly prevailed during 1990s.As the response of atmosphere to the ocean,two decadal wind patterns appear in association with the SST decadal modes.One is characterized by anomalous development of the zonal wind,the other by anomalous development of the meridional wind.These two kinds of modes can also be regarded as different phases of the decadal oscillation.Further studies have shown that the influences of the two kinds of modes on the ENSO are different.The horse saddle mode has a stronger impact on the ENSO than the horseshoe mode.A possible mechanism for the influence of the decadal variability on the ENSO signal is presented.The central part of the thermocline along the equatorial Pacific moves up or down simultaneously with its eastern part while the decadal variability bears the horseshoe pattern.But the two segments of the thermocline in the central and eastern Pacific act oppositely while the decadal variability shows the horse saddle pattern.In this case it has an-influence on the individual ENSO'events by the superposition of the decadal variability.  相似文献   

19.
年代际气候预测计划(DCPP)是第六次国际耦合模式比较计划(CMIP6)的子计划之一,其目标是利用多模式开展气候系统年代际预测、可预测性和变率机制研究。DCPP设计了3组试验,即年代际回报试验、预报试验以及理解年代际变率机制和可预测性的敏感性试验。目前有21个模式拟参与DCPP计划,其中包括5个来自中国的模式。DCPP将推动解决气候系统从年际到年代际尺度预测相关的多项科学问题,评估当前气候预测系统预报技巧,挖掘潜在可预报性,研究长时间尺度气候变率形成机制,提供对科学和社会有用的预测产品。  相似文献   

20.
Prediction of the Pacific sea surface temperature (SST) anomaly in the coming decades is a challenge as the SST anomaly changes over time due to natural and anthropogenic climate forcing. The climate changes in the mid-1970s and late-1990s were related to the decadal Pacific SST variability. The changes in the mid-1970s were associated with the positive phase of decadal El Niño-Southern Oscillation (ENSO)-like SST variation, and the changes in the late-1990s were related to its negative phase. However, it is not clear whether this decadal SST variability is related to any external forcing. Here, we show that the effective solar radiation (ESR), which includes the net solar radiation and the effects of volcanic eruption, has modulated this decadal ENSO-like oscillation. The eastern Pacific warming (cooling) associated with this decadal ENSO-like oscillation over the past 139 years is significantly related to weak (strong) ESR. The weak ESR with strong volcanic eruption is found to strengthen the El Niño, resulting in an El Niño-like SST anomaly on the decadal time scale. The strong eruptions of the El Chicho’n (1982) and Pinatubo (1991) volcanoes reduced the ESR during the 1980s and 1990s, respectively. The radiation reduction weakened the Walker circulation due to the “ocean thermostat” mechanism that generates eastern Pacific warming associated with a decadal El Niño-like SST anomaly. This mechanism has been confirmed by the millennium run of ECHO-G model, in which the positive eastward gradient of SST over the equatorial Pacific was simulated under the weak ESR forcing on the decadal time scale. We now experience a reversal of the trend in the ESR. The strong solar radiation and lack of strong volcanic eruptions over the past 15 years have resulted in strong ESR, which should enhance the Walker circulation, leading to a La Niña-like SST anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号