首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aromatic fraction from crude oil has a substantial solubility in water and as a result makes up the major hydrocarbon components of processed ballast water.1,2 The purpose of this study was to investigate the metabolism of several of the major components of this processed water by Chinook salmon, Oncorynchus tschawytscha, liver microsomes. The metabolic products of toluene and ethylbenzene in this microsomal system, as determined by gas chromatography-mass spectrometry, were benzyl alcohol and 1-phenylethanol, respectively. The conditions for the microsomal incubations were 20°C, pH 7·5, and an ionic strength of 0·126. A linear rate of benzyl alcohol and 1-phenylethanol formation is observed during the first 30 to 60 min followed by a decrease in the rate between 60 and 90 min.  相似文献   

2.
To determine the effect of low water temperature on development, walleye pollock (Theragra chalcogramma) eggs from the Bering Sea were reared at −0.6°C, 0.4°C, 2.0°C, and 3.8°C. One group of eggs was reared at 3.9°C under a diel light cycle (14 h light, 10 h dark) to observe the effect of light on development and hatching. Development was normal for all temperatures except −0.6°C; abnormal development of the tail and lack of development of eyes occurred in some embryos. Time to 50% hatch was 820, 620, and 424 h at 0.4°C, 2.0°C, and 3.8°C. Eggs incubated in diel light at 3.9°C developed at the same rate as eggs incubated in constant dark at 3.8°C, but required an additional 72 h to reach 50% hatch. A piece-wise regression model was generated to predict egg age for incubation temperatures of −0.6°C to 3.8°C. For temperatures recorded in the southeastern Bering Sea 1995–1998, the model predicted incubation periods for walleye pollock eggs that varied by 13 days between the warmest and coldest years.Walleye pollock eggs from Shelikof Strait, Alaska, were incubated at 0.2°C, 1.8°C, and 2.8°C. Development was normal for all temperatures. A piece-wise regression model (as above) was generated for incubation temperatures 0.2–2.8°C. When the regression models were compared, Bering Sea eggs (1.4–1.7 mm in diameter), required more time for development prior to hatch than Shelikof Strait eggs (1.2–1.3 mm in diameter) at 1.8°C and 2.8°C. However, for temperatures 0.2–2.0°C, Bering Sea walleye pollock began hatching earlier and at a developmentally younger age than Shelikof Strait walleye pollock.  相似文献   

3.
The effect of ionic interactions on the kinetics of disproportionation of HO2, and the oxidation of Fe(II) and Cu(I) has been examined. The interactions of O2 with Mg2+ and Ca2+ ions in seawater increases the lifetime by 3–5 times compared to water. The effect of OH on the oxidation of Fe(II) in water and seawater shows a second degree dependence from 5 to 45°C. The effect of salinity on the oxidation of Fe(II) was found to be independent of temperature, while the effect of temperature was found to be independent of salinity. The energy of activation for the overall rate constant was found to be 7 ± 0.5 kcal mol−1.The effect of pH, temperature, salinity and ionic composition on the oxidation of Cu(I) has also been examined. In NaCl solutions from 0.5 to 6 M, the log k for the oxidation was a linear function of pH (6–8) with a slope of 0.2 ± 0.05. The reaction was strongly dependent on the Cl concentration with variation of from 0.3 to 340 min from 0.5 to 6 M Cl. The rates of oxidation of Cu+ and CuCl0 responsible for these effects are dependent upon ionic strength. The energy of activation for the reaction was 8.5–9.9 kcal mol−1 from 0.5 to 6 M. Studies of the oxidation in various NaX salts (X = I, Br and Cl) give rates in the order Cl > Br > I as expected, due to complex formation of Cu+ with X.  相似文献   

4.
Mussels (Mytilus edulis L.) were exposed to North Sea crude oil, microencapsulated oil and dispersants, singly and in combination, and growth rates measured at 24–48 h intervals.Exposure to microencapsulated pure oil (2·0–2·1 mg litre−1) and to microencapsulated mixtures of oil (2·2−2·5 mg litre-1+5 % of the different dispersants (FINASOL OSR 5, COREXIT 9527, DISPOLENE 36 S) gave approximately the same reduction in growth rate (80–90%) within 170h.Oil chemically dispersed with DISPOLENE 36 S and a pure oil mechanically dispersed in water were significantly less toxic. In high concentrations (2 mg litre−1) all disperants are toxic, DISPOLENE 36 S ssignificantly more than the others.Mussels exposed for 170 h to microencapsulated oil and to microencapsulated oil dispersant mixtures recovered to control growth within 300 h in clean seawater, while in those given pure oil-in-water suspension, the recovery was slower.It is concluded that the toxicity of oil is mainly related to size and concentration of oil particles, while the effect of 5% dispersants added is negligible.  相似文献   

5.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

6.
Previous estimates of the world-wide input of oil to the marine environment by natural seeps ranged from 0·2 to 6·0 million (metric) tonnes per year with a ‘best estimate’ of 0·6 million tonnes per year. Based on considerations of the availability of oil for seepage from the world's known and assumed oil resources, we believe that the world-wide natural oil seepage over geological time should be revised to about 0·2 million tonnes per year with a range upward or downward of a factor of ten leading to estimates between 0·02 and 2 million tonnes per year. Our estimate of the amount of oil eroding from the land and being transported to the oceans is about 0·05 million tonnes per year with an order of magnitude uncertainty. Therefore, while the uncertainties are large, we estimate that the total amount of oil entering the marine environment by natural, geological processes, is about 0·25 million tonnes per year, and the estimate may range from about 0·25 to 2·5 million tonnes per year.  相似文献   

7.
The exceptional development of coeval hydrocarbon and aqueous fluid inclusions (FI) in fluorite from the MVT-type ore deposit of Koh-i-Maran, Baluchistan (North Kirthar range, Pakistan), provides samples which are representative of the ore-forming fluid and which support the hypothesis of petroleum migration in the province. Primary brines at 125°C (10 wt% equ. NaCl) and secondary CH4-rich brines at 135°C (7 wt% equ. NaCl), are recognised to be associated with oil migration in the fluid inclusions. They support the model of a per ascensum MVT (Mississippi Valley Type) stratabound hydrothermal deposit. A pressure–temperature path of 120–125°C to 165–200 bars is calculated from microthermometric data and PVT modelling of hydrocarbon FI using the modified Peng–Robinson Equation of State (IFP software) from primary cogenetic inclusions (oil and brines).The composition of gas and oil fractions is obtained by a combination of Synchrotron FTIR microanalysis and gas chromatography performed on individual fluid inclusions. The oil entrapped as a coeval primary fluid phase is a light aliphatic normal oil in the range C8–C35 with a high CO2 content. The brown solid phase found systematically in the oil is probably asphaltene resulting from precipitation after trapping of the heavy fraction, which commonly occurs by decreasing pressure and temperature and\or by CO2 injection. Later CH4-rich brine influx probably modified part of the oil in the primary fluid inclusions because degraded oil is observed within such inclusions. Biomarkers obtained by GC-MS analysis indicate a terpane distribution quite similar to the nearest oil seepage in the Gokurt area. This result and the high CO2 content of organic fluid inclusions indicate a restricted/confined sedimentary environment for the source rock, which could correspond to the Eocene Carbonate formation with type-II organic matter. A possible additional input of gas from the Sambar formation is suggested as feasible. The link between the fluid inclusion data and the geodynamic evolution lead us to propose a circulation of basinal fluids driven mainly by the fault system during dewatering in the foredeep. In Pakistan, they are coeval to major compressional NW–SE Oligocene episode in the thrust belt. The origin of the fluorine may be found in the basin sediments as well as near the basement. The brines originated in salt structures recognized in eocambrian at the decollement level, the source rock was already mature.  相似文献   

8.
The photochemical instability of several related pteridines in seawater was investigated by aseptic incubation of solutions at 20–22°C under illumination from cool-white light of intensity 6 kerg cm−2 sec−1, and the chemical changes were spectrophotometrically monitored. All the pteridines showed markedly accelerated degradation from this illumination relative to their behaviour in total darkness.Pterin and lumazine were degraded very slowly with zero-order reaction kinetics, while the other pteridines photolysed rapidly (according to first-order kinetics) with decomposition rates increasing in the order dioxylumazine (2,4,6,7-tetrahydroxypteridine) < leucopterin < isoxanthopterin < xanthopterin < oxylumazine (2,4,6-trihydroxypteridine). Excepting leucopterin and dioxylumazine, the photolysis rates were attributable to the pH of seawater and not its salt content; this was also the case with oxylumazine which required the salt content of seawater for decomposition in darkness. Leucopterin and dioxylumazine (both 6,7-dihydroxylated pteridines) gave evidence of complexation with the major divalent cations (Ca2+, Mg2+) of seawater, by virtue of which their photolytic degradation rates were enhanced to magnitudes obtained in pH-10 buffer without seawater. It is proposed that such complexation produces structural forms of these pteridines analogous to their normal ionic forms at pH 10–12.The photolysis of the 6-hydroxylated pteridines (xanthopterin, oxylumazine) proceeded via intermediate formation of their corresponding 7-hydroxylated derivatives (leucopterin, dioxylumazine).  相似文献   

9.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

10.
Henry's law constants were determined for α- and γ-hexachlorocyclohexane (HCH) as a function of temperature (0.5–45°C) in artificial seawater (SW; 30‰) and distilled water (DW) using the gas stripping method. Water samples (1–5 ml) were withdrawn from the stripping vessel during the stripping process (30–360 h), solvent extracted and analyzed by gas chromatography—electron-capture detection. The effect of bubbling depth was checked to ensure that bubbles leaving the system were at equilibrium with HCHs in the aqueous phase. Henry's law constants determined at 35 and 45°C in SW were significantly higher (P≤ 0.05) than in DW for both α- and γ-HCH, but not at lower temperatures. The slopes (m) and intercepts (b) of log H vs. 1 / T plots were: α-HCH (DW, 0.5–45°C); m = −2810 ± 110, B = 9.31 ± 0.38; α-HCH (SW, 0.5–23°C); M = −2969 ± 218, B = 9.88 ± 0.76; γ-HCH (DW, 0.5–45°C); M = −2382 ± 160, B = 7.54 ± 0.54; γ-HCH (SW, 0.5–23°C); M = −2703 ± 276, B = 8.68 ± 0.96. Henry's law constants determined in this study compared well with those calculated from reported vapor pressure and solubility data.  相似文献   

11.
Two series of experiments were carried out to assess the long-term effects of the water soluble fractions (WSF) of fuel oils on the marine isopod, Sphaeroma quadridentatum. In one experiment, juvenile isopods (one month old) were exposed to sublethal concentrations (0·1% to 15% WSF) of a fuel oil (Baytown, Exxon) at room temperatures of 24 ± 1–6°C for nine months. These isopods survived to maturity and reproduced. However, growth rate was adversely affected at concentration ≥ 3% WSF and fecundity was depressed at concentrations ≥ 1% WSF. Survival of offspring in clean seawater was dependent to a large extent on the history of the previous generation. Offspring from groups exposed to ≥ 1% WSF experienced high mortality (> 70% within five weeks) even in clean seawater. This may imply that a population of Sphaeroma exposed to WSF as low as 0·2 ppm may eventually disappear, although animals can grow to maturity and reproduce at concentrations < 3 ppm.In another experiment, adult Sphaeroma (three months old) were subjected to the WSFs of four fuel oils (Baton Rouge, Baytown, Montana and New Jersey) for one month. Fecundity was depressed at a concentration > 15% WSF, regardless of the kind of fuel oil. On the other hand, the number of young produced bythe surviving females varied with the type of fuel oil for the same level of WSF. This may be attributed to different relative amounts of toxic components present in the WSF.  相似文献   

12.
The effects of zinc being added to sea water, to final concentrations of 0·1–20 ppm, have been studied on the heart rate, valve movements, mortality of Scrobicularia and on both isolated and in situ inhalant siphon preparations.The acute toxicity threshold for added zinc was determined to be about 10 ppm at 10°C. The median lethal times for 10 and 20 ppm zinc were 143·5 and 116·1 h respectively.The responses of Scrobicularia to zinc concentrations in sea water of between 0·1 and 10 ppm were tested by exposure for 6 h. Above 1 ppm, valve closure and bradycardia occur within 10–15 min. Below 5 ppm the valves subsequently opened and heart rate increased over the 6 h period, but in 10 ppm closure and pronounced bradycardia were maintained throughout.Addition of zinc, to final concentrations of 1, 5 and 10 ppm, had no effect on the isolated inhalant siphon in contrast to copper at 0·25 and 0·5 ppm which caused very marked siphonal contractions. However, when zinc (1–10 ppm) was added to an in situ inhalant siphon preparation, contractions occurred which were lost on removal of zinc from the bathing medium. Cutting the cruciform muscles medially resulted in the loss or delay of the response to zinc. This suggests the possibility of the cruciform muscle complex (muscle strands and associated sense organs) responding to zinc. This contrasts with the direct action of copper on the neuromuscular system of an isolated siphon.  相似文献   

13.
Hepatic levels of Cu, Zn and metallothionein (MT) in perch, caught in a Cu/Zn gradient from a brassworks, reflected the water concentration of Cu (1·0–9·4 ppb) and Zn (0·56–59 ppb). Significant correlations were found between hepatic Cu and MT levels (r = 0·72), and between Zn and MT levels (r = 0·69). There was an increase of the amount of Cu and Zn in the cytosolic fraction of the liver with increased hepatic levels of the metals. When liver samples. from perch caught at the most contaminated location, were run on a gel filtration column (Sephadex G-75) 78% of the cytosolic Cu and 24% of the Zn in the cytosol eluted together with MT.  相似文献   

14.
The effect of dissolved petroleum hydrocarbons in the environment on phytoplankton biomass measured as chlorophyll a was studied near the oil tanker route in the southern Bay of Bengal. In the transect from 5° N, 77° E to 5° N, 87° E the concentrations of dissolved petroleum hydrocarbons were negatively correlated with phytoplankton biomass, whereas in the 0° N, 87° E to 1° N, 79° E transect they were positively correlated with phytoplankton biomass. The mean petroleum hydrocarbon concentrations in the two transects were 12·12 ± 4·67 μg litre−1 and 11·23 ± 4·5 μg litre−1, respectively.It is surmised that the effect of dissolved petroleum hydrocarbons on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked with the water-soluble petroleum hydrocarbon fraction of light Arabian Crude support this.  相似文献   

15.
16.
To identify some specific effects of organic contaminants on fisheries in an urbanized estuary we compared the reproductive success of starry flounder from San Francisco Bay with concentrations of tissue contaminants and hepatic mixed-function oxidase (MFO) activity. We found significantly lower (P < 0·05) sediment concentrations of total identified polynuclear aromatic hydrocarbons (PAHs) in the less urbanized San Pablo Bay (SP) area (Fig. 1) than in the more urbanized central bay (CB) stations (Table 1). For flounder in early gametogenesis (August and September) the SP fish (n = 20) had significantly lower (P < 0·01) liver concentrations of Aroclor 1260 (0·34 ± 0·14 μg/g) than those at the CB stations: Berkeley (BK, n = 20, 1·6 ± 1·6 μg/g); Oakland (OK, n = 16, 2·3 ± 2·8 μg/g); and Alameda (AL, n = 4, 2·2 ± 1 μg/g). A similar pattern existed for DDT concentrations: SP = 0·2 ± 0·16 μg/g; BK = 0·1 ± 0·34 μg/g; OK = 0·4 ± 0·53 μg/g; and AL = 0·4 ± 0·33 μg/g. Total PAHs in livers were as follows: SP = 0·14 μg/g; BK = 2·6 μg/g; OK = 1·4 μg/g; and AL = 14 μg/g. Although gonad index, liver index, and presence of fin rot are inversely related to aryl hydrocarbon hydroxylase (AHH) activity, healthy fish in a similar reproductive state have lower AHH activities in the SP area. For example, in August and September, 1984, mean AHH activities were as follows: SP = 203 ± 89, and CB = 355 ± 200 pmol 3-OH-B[a]P mg microsomal protein min. We found a log-linear relationship for AHH activity and its percent inhibition by 7,8-benzoflavone (10−4m) and only a few fish from SP showed enhanced AHH activity after addition of 7,8-benzoflavone. This suggests that most of the starry flounder in San Francisco Bay are induced.  相似文献   

17.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

18.
The decomposition of cultured marine phytoplankton (Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20–25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45–50% of the N and 57–60% of the P in the phytoplankton and 60–63% of the N and 36–60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the particulate N and P. First-order rate constants (−k, base e) for decomposition during the 1st and 2nd phases were 0·02 to 0·2 day−1 and 0·003 to 0·02 day−1, respectively. The decay rates are far too slow to account for the ‘rapid in situ recycling’ of nutrients needed to support phytoplankton production when other means of nutrient resupply (by advection, fixation, rainfall, etc.) are very low.  相似文献   

19.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

20.
Summer porewater and spring and summer surficial sediment samples were collected from 26 locations in the intertidal region of the Fraser River estuary. Porewaters were analysed for dissolved iron and manganese (as defined by species <0·2μm in diameter) to assess the contribution of diagenesis to concentrations of iron and manganese oxides at the sediment–water interface. Surficial sediment samples were geochemically characterized as: % organic matter (% LOI); reducible iron (RED Fe, iron oxides) and easily reducible manganese (ER Mn, manganese oxides). Grain size at each site was also determined. The sediment geochemical matrix, as defined by the above four parameters, was highly heterogeneous throughout the intertidal region (three-way ANOVA;P<0·0001). For RED Fe and ER Mn, this heterogeneity could be explained by either diagenetic processes (RED Fe) or by a combination of the proximity of the sample sites to the mouth of the Fraser River estuary plus diagenetic processes (ER Mn). Correlation (Spearman Rank Correlation Test (rs), of dissolved iron within the subsurface sediments with amounts of RED Fe recovered from the associated surface sediments was highly significant (rs=0·80, P<0·0001); high concentrations of RED Fe at the sediment–water interface co-occurred with high concentrations of dissolved iron, regardless of the proximity of the sample locations to riverine input. Compared with iron, the relationship between dissolved manganese and ER Mn from surface sediments was lower (rs=0·58;P<0·0008). Locations most strongly influenced by the Fraser River contained greater concentrations of ER Mn at the sediment–water interface than that which would be expected based on the contribution from diagenesis alone. Sediment grain size and organic matter were also influenced by the proximity to riverine input. Surficial sediment of sites close to the river mouth were comprised primarily of percent silt (2·0μm–50μm) whereas sites not influenced by riverine input were primarily percent sand (grain size >50μm). Concentrations of organic matter declined from the mouth to the foreslope of the estuary. With the exception of RED Fe, temporal variation (May vs July) was insignificant (P>0·05, three-way ANOVA). Concentrations of RED Fe recovered from the surficial sediments were in general greater in the summer vs spring months, although spring and summer values were highly correlated (Pearson Product Moment Correlation Coefficient; PPCC; R=0·89;P<0·0001). As the bioavailability of metals is dependent on sediment geochemistry, availability throughout the intertidal region will also be spatially dependent. This heterogeneity needs to be taken into account in studies addressing the impact of metals on estuarine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号