首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
东北多年冻土地区地基承载力对气候变化敏感性分析   总被引:1,自引:0,他引:1  
原喜忠  李宁  赵秀云  杨银涛 《岩土力学》2010,31(10):3265-3272
近年来,中国东北多年冻土地区正处于显著的增温过程中。由此导致多年冻土逐渐退化,并严重影响到构筑物的稳定性。以0.05 ℃的年平均气温上升率为背景,采用带有相变的传热学有限元方法,对中国东北多年冻土地区不同初始气温条件和不同含冰量类型冻土的地基温度状况以及季节活动层厚度变化进行了模拟;利用温度场有限元数值试验结果和已有承载力试验数据分析了不同类型冻土地基的力学性质对气温变化敏感性,评估了气温变化对各类冻土地基承载力的影响。气候变化对多年冻土地区构筑物稳定性影响程度取决于两个环节:其一,冻土地基温度状况对气候变化的响应;其二,冻土地基力学性质对地基温度变化的敏感性。研究结果表明,冻土地基含冰量和温度状态对其承载力随气温变化的敏感性具有显著的影响。含土冰层地基承载力对气温变化最为敏感,气温变化对高温冻土地区浅层地基承载力以及桩-土冻结强度影响较大;而深基础桩端冻土地基承载力受气候变化影响相对较小。  相似文献   

2.
多年冻土区桩基竖向承载力的预报模型   总被引:1,自引:1,他引:0  
唐丽云  杨更社 《岩土力学》2009,30(Z2):169-173
通过多年冻土区大气温度与地温关系,得出季节冻结期和季节融化期地面温度,进一步确定季节冻结及季节融化深度。综合地面温度得出多年冻土厚度随时间变化的关系,将大气温度、地面温度、融冻层厚度及多年冻土厚度变化建立起与时间相关的联系方程。考虑大气温度变化分析桩土相互作用并建立桩土相互作用模型。综合联系方程、桩土分析模型及冻土地区建筑地基基础设计规范中的单桩竖向承载力公式,建立了联系大气温度、地面温度、季节融冻深度、多年冻土层厚度变化与桩基承载力的关系预报模型,为预测在设计使用年限内随着大气温度变化桩基的工作状况提供较为科学的依据。  相似文献   

3.
青藏高原地气温度之间的关系   总被引:20,自引:10,他引:10  
李述训  吴通华 《冰川冻土》2005,27(5):627-632
应用多元线性回归分析方法,对位于40°~25°N,75°~102°E范围内的119个气象观测台站的1991—2000年平均气温和地面温度观测资料进行分析,获得了研究区域的月平均气温、地面温度与纬度、经度和海拔高度间关系的线性统计系数.统计结果和实测资料的比较以及统计分析的相关系数结果表明,高原地区的气温、地面温度和它的年较差与经度、纬度及海拔高度具有很好的相关性.应用曲线拟合方法将所得统计分析系数拟合成时间函数,就可将高原地区的气温和地面温度表示成统一的空间坐标和时间的函数.如果将已验证的1991—2000年平均地面温度与气温差统计结果作为气温与地面温度间关系的实验结果,那么,就可以解决长期困扰多年冻土预报研究中在任意已知时间和空间点上气温条件下,难以确定影响多年冻土温度状况变化上边界条件的变化这一难题.这一结果对于目前正在进行的青藏铁路冻土工程和环境预报研究具有重要意义.  相似文献   

4.
东北冻土区积雪深度时空变化遥感分析   总被引:5,自引:5,他引:0  
积雪作为冰冻圈的重要组成部分,对地面有保温作用,在消融时又吸收热量降低地面温度,影响冻土发育,对气候的变化十分敏感。利用微波遥感数据1979-2014年逐日中国雪深长时间序列数据集,采用GIS空间分析和地学统计方法,分析了东北冻土区积雪深度的时空变化规律及其异常变化。结果表明,东北冻土区多年平均雪深为2.92 cm,年平均雪深最高值出现在岛状多年冻土区,最低值出现在季节冻土区。东北冻土区年平均积雪深度变化以减少为主,占区域面积的39.77%,减少速率为0.07 cm·(10a)-1。东北冻土区年平均积雪深度在1986年发生突变,开始出现减少的趋势,这与气温突变年份较为吻合。受地形和气温变化影响,年平均积雪深度减少的敏感区域主要发生在岛状多年冻土区。气温是影响东北冻土区年平均积雪深度变化最主要的因素,降水量、风速、湿度、日照时数对积雪深度均有影响。季节冻土区积雪深度对气候的敏感性要大于多年冻土区。  相似文献   

5.
黄河源区冻土特征及退化趋势   总被引:17,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

6.
影响多年冻土上限变化的因素探讨   总被引:6,自引:6,他引:0  
王银学  赵林  李韧  吴通华  乔永平 《冰川冻土》2011,33(5):1064-1067
利用地温及活动层水热观测资料,分析青藏公路沿线近年来影响多年冻土上限的变化因素.研究结果显示,青藏公路沿线冻土上限总体呈现下降趋势,冻土上限的变化与近年来区域气候变化的趋势一致;近年来多年冻土上限下降0.1~0.5 m,所处的地理位置不同,冻土上限下降的幅度也不同.气温变化是影响冻土上限的一个重要的外部因素,上限变化的...  相似文献   

7.
地面冻结数模型及其在青藏高原的应用   总被引:9,自引:4,他引:5  
地面冻结数模型可用于分析、模拟和预测多年冻土的分布, 在高纬冻土地区有比较成功的应用. 然而Nelson提出的地面冻结数模型并不具备明显的物理意义, 往往被归入经验统计范畴. 从Stefan公式出发, 重新推导并详细讨论了地面冻结数模型, 使冻结数F=0.5作为多年冻土与季节冻土的分界线具备明确的物理意义. 重新推导后的模型增加了一个影响冻土形成和发展过程的并取决于岩土冻融性质的因子E, 原Nelson地面冻结数模型可作为E=1时的特例给出. 根据青藏高原实测地面温度资料, 针对不同的E值, 分别模拟了青藏高原的冻土分布情况. 对比分析表明, 处在多年冻土南北界附近的土壤性质较明显影响了多年冻土在这些区域的分布情况, 通过对参数E的调参, 可以更好地模拟多年冻土的真实分布情况.  相似文献   

8.
温度对季节性冻土水分迁移的影响研究   总被引:2,自引:0,他引:2  
寒区季节性冻土冻胀性质对工程实际影响很大。为了了解温度对水分迁移现象的影响,本文通过地温测试仪对野外不同深度处的土层温度进行测量,并在不同时间相应深度取土样,测其含水率,通过比较不同时间不同深度处的含水率的变化情况来分析温度变化对水分迁移现象的影响。在气温回升之前,当地表温度降低时,温度随深度的降低而升高;随着地表温度不断降低,各深度处的温度也不断下降,温度梯度增加,各深度处地层的含水率变化大,即温度梯度的增加促进了季节性冻土区水分迁移现象的发生。  相似文献   

9.
近年来青藏高原多年冻土地区降雨量呈增大趋势,导致活动层沿多年冻土层滑脱,诱发的冻土浅层滑坡灾害严重影响区域生态环境和人类活动。冻土浅层滑坡失稳是渗流、温度和应力复杂耦合的过程,明确降雨条件下多年冻土斜坡水热力响应机制,揭示降雨诱发冻土浅层滑坡失稳的机理十分关键。基于冻土水热力耦合数值模拟方法,建立了仅施加气温变化的模型一和在气温变化基础上施加强度为9 mm·d-1、持续降雨18 d的模型二,探讨了低强度、长时间降雨对多年冻土斜坡水热力演化的影响。结果表明:夏季雨水入渗对斜坡浅层温度场产生扰动,进而影响土体冻融过程,活动层以下有形成富水层的可能。雨水入渗导致融土饱和度大幅增加,水分渗流方向由竖直向下逐渐转变为顺坡方向。极限状态下斜坡位移分布在活动层,符合冻土浅层滑坡变形特征,降雨入渗数天后活动层位移有显著增大的趋势,最大位移所在位置向坡脚转移。降雨对斜坡稳定性影响显著,雨水入渗对活动层水热力产生持续影响,斜坡安全系数最小值出现明显滞后。研究结果为青藏地区冻土浅层滑坡灾害防治提供了科学指导。  相似文献   

10.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

11.
徐安花 《冰川冻土》2014,36(4):987-993
高速公路路基幅面宽度的成倍增加,沥青路面的吸热效应更为显著,工程对其下伏多年冻土的热影响更为显著. 热棒、热棒保温板复合结构等传统工程措施能否保护宽幅高速公路下冻土稳定是一个亟待回答的问题. 根据带相变热传导有限元方法,对共和-玉树高速普通路基、热棒路基和热棒保温板复合结构路基在未来全球变暖情形下的地温场特征进行了数值模拟分析. 结果表明:在年平均气温为-3.5℃或地表年平均温度为-1℃的多年冻土地区,普通路基和热棒路基在全球变暖条件下路基下伏冻土都将发生融化,宽幅公路路基将会产生显著融沉变形,不能保证宽幅公路路基20 a使用期内的稳定性. 热棒保温板复式结构显示了较好的冷却路基效果,在第20年路基下多年冻土人为上限高于原天然上限,路基下富冰冻土仍处于冻结状态,可以保证宽幅沥青公路在服务期内的热稳定性.  相似文献   

12.
青藏高原冻土区路面类型对路基温度场影响的非线性分析   总被引:4,自引:1,他引:3  
采用焓模型, 建立含相变的冻土路基温度场, 综合考虑气温、太阳辐射、风速风向、坡面蒸发等气象因素, 将诸多气象因素归结为第二、三类边界条件的叠加组合, 对不同气温地区的沥青路面及水泥路面路基温度场进行了有限元计算. 结果表明: 路面类型对冻土路基温度场有着重要影响, 水泥路面的采用可有效地降低路面温度, 延缓冻土上限下降速率, 从而可以有效保护基底多年冻土; 从对基底冻土上限影响的角度来看, 路面类型、外部气温与路基高度三者间存在一定的动态等效关系.  相似文献   

13.
中国天山西部那拉提山地区多年冻土分布特征   总被引:1,自引:1,他引:0  
那拉提山位于中国天山西部, 其冻土变化过程对区域自然环境变化、 工程活动产生重要互馈作用. 结合即将修建的新疆伊(宁)-库(车)输电线路前期的冻土勘察结果, 对那拉提山地区冻土分布特性、 主要影响因素等进行了探讨. 结果表明: 那拉提山地区冻土分布属于典型的山地多年冻土, 冻土发育区域、 冻土类型和地下冰空间发育特征及冻土温度状况等主要受到海拔、 地形地貌、 地表水分条件等因素的影响和控制. 同时, 该地区大量发育有泥流阶地、 泥流舌、 热融滑塌、 石环、 石河等冰缘现象. 受坡向、 植被、 水分等因素影响, 区域内冻土活动层厚度为0.7~4.5 m, 随着海拔增加, 冻土厚度由阳坡连续多年冻土下界(海拔3 000 m)附近的约20~22 m增加到海拔3 300 m附近的约70~100 m. 自1985年以来, 区域年平均气温上升(约0.088℃·a-1), 该区域内的冻土退化趋势明显.  相似文献   

14.
下边界条件对多年冻土温度场变化数值模拟的影响   总被引:1,自引:1,他引:0  
在气候变暖背景下,北半球多年冻土呈现不同程度的退化趋势,冻土升温、活动层增厚、地下冰消融改变了区域工程地质条件、地形地貌,不仅对寒区环境和工程稳定性造成潜在的威胁,还影响着这些地区的气候、水文和生态过程.因此,准确评估和预估多年冻土热状况的变化具有重要科学和实践意义.现有用于模拟多年冻土热状况的各类模式重点考虑了近地表...  相似文献   

15.
碎块石护坡在寒区道路工程中的应用   总被引:11,自引:7,他引:11  
基于室内实验结果,并结合风火山地区地温资料以及风火山实验场现场观测资料,针对抛石护坡对公路铁路沿线路基底下的多年冻土的保护作用以及对多年冻土上限的抬升效果进行对比分析,证实了抛石护坡措施的优越性和可行性.抛石护坡措施兼顾了调控对流和调控传导两方面,是一种典型的主动积极调控地温、保护冻土的措施;它具有热二极管功能,使得热能单向排出,从而使得冻土上限得以较大幅度的抬升,对保证道路安全与畅通起着至关重要的作用。  相似文献   

16.
青藏公路下伏多年冻土的融化分析   总被引:14,自引:6,他引:8  
基于青藏公路沿线高温冻土区和低温冻土区2组地温观测孔5 a的地温观测资料, 研究了路基下伏多年冻土的融化状态, 定量分析了进入路基下多年冻土内的热状况. 结果表明: 路基近地表地温明显高于对应天然地表下的地温, 路基近地表经历的融化期长于对应天然地表, 高温冻土区路基内已形成贯穿融化夹层;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态, 进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因. 低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主, 随着地温的增高, 低温冻土区也可能发生强烈的冻土融化.  相似文献   

17.
本文以大量实测资料为基础,探讨了季节融化层导温性能及地温峰值滞后等自然因素对多年冻土上限深度的影响。还通过地表面的热效应和气温脉动的研究,讨论了多年冻土上限深度的小区域特点和未来期望值。提出了适合青藏高原多年冻土区计算多年冻土上限深度的半经验公式。由于主要依据是地温的分布和传导特征,故称之为“地温法”。  相似文献   

18.
青藏高原多年冻土区沥青路面下融化盘形成变化特征   总被引:14,自引:9,他引:14  
李述训  吴紫汪 《冰川冻土》1997,19(2):133-140
在青藏高原多年冻土区,沥青路面的辅设改变了地表与大气之间的热交换关系,尤其是路面水分蒸发量大量减少,致使路面突然升高,多年冻土层内能量积蓄增多,地温升高,上奶宵年下降。最终在路基下多年冻土顶板上形成融化夹层,并随时间延长,多年冻土顶板下降,融化夹层逐年扩大,多年冻土地下冰融化,路面破坏,严重影响道路运营。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号