首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Lagrangian particle method embedded within a 2-D finite element code, is used to study the transport and ocean–estuary exchange processes in the well-mixed Great Bay Estuarine System in New Hampshire, USA. The 2-D finite element model, driven by residual, semi-diurnal and diurnal tidal constituents, includes the effects of wetting and drying of estuarine mud flats through the use of a porous medium transport module. The particle method includes tidal advection, plus a random walk model in the horizontal that simulates sub-grid scale turbulent transport processes. Our approach involves instantaneous, massive [O(500,000)] particle releases that enable the quantification of ocean–estuary and inter-bay exchanges in a Markovian framework. The effects of the release time, spring–neap cycle, riverine discharge and diffusion strength on the intra-estuary and estuary–ocean exchange are also investigated.The results show a rather dynamic interaction between the ocean and the estuary with a fraction of the exiting particles being caught up in the Gulf of Maine Coastal Current and swept away. Three somewhat different estimates of estuarine residence time are calculated to provide complementary views of estuary flushing. Maps of residence time versus release location uncover a strong spatial dependency of residence time within the estuary that has very important ramifications for local water quality. Simulations with and without the turbulent random walk show that the combined effect of advective shear and turbulent diffusion is very effective at spreading particles throughout the estuary relatively quickly, even at low (1 m2/s) diffusivity. The results presented here show that a first-order Markov Chain approach has applicability and a high potential for improving our understanding of the mixing processes in estuaries.  相似文献   

2.
象山港水交换特性研究   总被引:4,自引:0,他引:4  
在验证良好的三维斜压潮流数学模型的基础上,以溶 解态的保守性物质为示踪剂,建立对流-扩散型的海湾水交换数值模型,计算了象山港水体半交换时间和平均滞留时间,并研究了斜压动力对湾内外水交换的贡献。研究结果表明,象山港水交换速度的区域性变化较大,水体半交换时间和平均滞留时间由象山港口门向湾顶逐渐增加,口门附近半交换时间在5d以内,平均滞留时间为5~10 d;湾顶水交换速度缓慢,水体半交换时间为30~35 d,平均滞留时间为35~40d。斜压动力对狭湾外段水交换影响较弱,对狭湾内段有较大的影响。  相似文献   

3.
于1991-1995年间5次在云贵高原泸沽湖、洱海湖和贵州阿哈湖、百花湖的湖心采集沉积物柱芯、界面水和湖水样品,通过其pH值和HCO-3浓度剖面及界面碱度扩散通量的研究,首次定量评估高原湖泊界面扩散作用上覆水体碱度的影响程度。研究结果表明,云贵高原某些湖水寄宿时间相对较长、湖水深度相对小的湖泊,界面扩散作用是水体碱度的重要来源之一;湖水寄宿时间较短、深度较小的湖泊,界面扩散对上覆水体的影响可以忽略不计。  相似文献   

4.
深海钢悬链立管触地点动力响应分析   总被引:1,自引:0,他引:1  
研究深海钢悬链立管(SCR)在海洋环境载荷作用下的动力响应.利用非线性弹簧模拟立管与海床触地点的耦合模型,通过模态分析得到钢悬链立管的动力特性参数;时域动力响应分析获得不同工况下触地点及典型部位的位移、弯矩和应力时程.比较分析表明:浮体垂荡运动对触地点的应力状态影响较大,触地点附近存在钢悬链立管动力响应过程中的位移极值点和弯矩极值点.所提方法为触地点区域模拟分析提供了新思路,给出的分析结论对钢悬链立管设计有一定借鉴意义.  相似文献   

5.
Based on theory of three-dimensional hydrodynamics,an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay.The three-dimensional hydrodynamic model,driven by tide and wind,is used to study the effects of wetting and drying of eatuarine intertidal flats by the dry-wet grid technology based on the Estuarine,Coastal and Ocean Model (ECOM).The particle model includes the advection and the diffusion processes,of which the advection process is simulated with a certain method,and the diffusion process is simulated with the random walk method.The effect of the intertidal zone,the turbulent diffusion and the timescales of the water exchange are also discussed.The results show that a moving boundary model can simulate the transport process of the particle in the intertidal zone,where the particles are transported for a longer distance than that of the stationary result.Simulations with and without the turbulent random walk show that the effect of turbulent diffusion is very effective at spreading particles throughout the estuary and speeding up the particle movement.The spatial distribution of residence time is given to quantify the water exchange capability that has very important ramifications to water quality.The effect of wind on the water exchange is also examined and the southeasterly wind in summer tends to block the water exchange near the northeast coast,while the northerly wind in winter speeds up the transport process.These results indicate that the Lagrangian particle model is applicable and has a large potential to help understanding the water exchange capability in estuaries,which can also he useful to simulate the transport process of contaminant.  相似文献   

6.
云贵高原湖泊沉积物─水界面碱度扩散通量研究   总被引:4,自引:0,他引:4  
于1991-1995年间5次在云贵高原泸沽湖,洱海湖和贵州阿哈湖,百花湖的湖心采集沉积物柱芯,界面水和湖水样品,通过其pH值和HCO3浓度剖面及界面碱度扩散通量的研究,首次定量评估高原湖泊界面扩散作用上不体碱度的影响程度,研究结果表明,云贵高原某些湖水寄宿时间对较长,湖水深度相对小的湖泊,界面扩散作用是水体碱度的重要来源之一,湖水寄宿时间较短,深度较小的湖泊,界面扩散对上覆水体的影响可以忽略不地。  相似文献   

7.
Two different methods of estimating the water exchange through the Baltic coastal region of Laxemar have been used, consisting of particle trajectories and passive tracers. Water is traced from and to a small discharge region near the coast. The discharge material in this region is treated as zero-dimensional particles or tracers with neutral buoyancy. The real discharge material could be a leakage of radio-nuclides through the sea floor from an underground repository of nuclear waste.Water exchange rates between the discharge region and the model domain are estimated using both forward and backward trajectories as well as passive tracers. The Lagrangian trajectories can account for the time evolution of the water exchange while the tracers give one average age per model grid box. Water exchange times such as residence time, age and transient times have been calculated with trajectories but only the average age (AvA) for tracers. The trajectory calculations provide a more detailed time evolution than the tracers.On the other hand the tracers are integrated “on-line” simultaneously in the sea circulation model with the same time step while the Lagrangian trajectories are integrated “off-line” from the stored model velocities with its inherent temporal resolution, presently 1 h. The sub-grid turbulence is parameterised as the Laplacian diffusion for the passive tracers and with an extra stochastic velocity for trajectories. The importance of the parameterised sub-grid turbulence for the trajectories is estimated to give an extra diffusion of the same order as the Laplacian diffusion by comparing the Lagrangian dispersions with and without parameterisation. The results of the different methods are similar but depend on the chosen diffusivity coefficient with a slightly higher correlation between trajectories and tracers when integrated with a lower diffusivity coefficient.  相似文献   

8.
Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori zontal diffusivity/viscosity due to the incorrect alignment of the axis. Therefore, such models can smear sharp fronts and introduce other numerical artifacts. For simulation with relatively low resolution, large lateral diffusion was explicitly used in models; therefore, such numerical diffusion may not be a problem. However, with the increase of horizontal resolution, the artificial diffusivity/viscosity associated with hori zontal advection in the commonly used Eulerian coordinates may become one of the most challenging ob stacles for modeling the ocean circulation accurately. Isopycnal eddy diffusion (mixing) has been widely used in numerical models. The common wisdom is that mixing along isopycnal is energy free. However, a careful examination reveals that this is not the case. In fact, eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Due to the thermobaric effect, stirring, or exchanging water masses, along isopycnal surface is associated with the change of GPE in the mean state. This is a new type of instability, called the thermobaric instability. In addition, due to cabbeling subscale diffusion of water parcels always leads to the release of GPE. The release of GPE due to isopycnal stirring and subscale diffusion may lead to the thermobaric instability.  相似文献   

9.

In this study, we investigated the mechanism of eutrophication and hypoxia in the upper Gulf of Thailand from August 2014 to June 2015 based on field observation data, box model analysis, and the unscaled trophic status index (UNTRIX). Fresh water residence time derived from a simple box model was long (38.61 days) during the transition period between the southwest to northeast monsoon in September 2014. In contrast, fresh water residence time was short (2.63 days) during the late northeast monsoon in February 2015. Long residence time was related to the development of widespread strong hypoxia in near-bottom waters in over half of the gulf during the transition between the southwest and the northeast monsoon, when river discharge was also very large. UNTRIX is used to assess water trophic levels, and is based on water qualities including concentrations of chlorophyll-a (Chl-a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP). Hypertrophic and eutrophic conditions were observed at river mouths; their seasonal eutrophication was related to river discharge and circulation. Nutrients were mainly increased by river discharge. Water column stratification and long residence time were required for the development of severe hypoxia in the study area.

  相似文献   

10.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   

11.
Generally the waters of the Ria Formosa Lagoon, Portugal have a short residence time, in the order of 0.5 days (Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T., Scory, S., 2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23, 1635–1671). This estimation is based on the measurements of currents and the modelling of water exchange at the outlets to the ocean. However, observations of the temperature and salinity in the inner channels imply that residence time is greater in these regions of the lagoon. To resolve this apparent contradiction, spatial measurements of the temperature and salinity were made with a meter for conductivity, temperature and depth along the principal channels of the western portion of the lagoon, with a sampling frequency of two per second. Evaporation rates of 5.4 mm day−1 were measured in a salt extraction pond adjacent to the lagoon and used to determine the residence time through salinity differences with the incoming seawater. In June 2004, the water flooding in from the ocean had an average salinity of 36.07 which contrasted with a maximum of 37.82 at mid ebb on a spring tide, corresponding to a residence time of >7 days; the mean residence time was 2.4 days. As the tide flooded into the channels, the existing water was advected back into the lagoon. Although there was a small amount of mixing with water from another inlet, the water body from the inner lagoon essentially remained distinct with respect to temperature and salinity characteristics. The residence time of the water was further prolonged at the junction between the main channels, where distinct boundaries were observed between the different water masses. As the water ebbed out, the shallow Western Channel was essentially isolated from the rest of the outer lagoon, and the water from this channel was forced down the Ramalhete Channel, from where it was unable to exit the lagoon in one tidal cycle due to the extensive path length of ∼14 km to the sea.  相似文献   

12.
Thermal infra-red satellite imagery and ship-borne studies of 15N stable isotopes are used to provide a first estimate of the quantity of carbon exported from the Benguela upwelling system during summer 1983/84. From satellite imagery, a region where cold water of upwelling origin was present on a quasi-permanent basis and a more offshore region where the presence of such water was intermittent were designated. New production inside the 200 m isobath was excluded from the calculations because an unknown proportion of it may be recycled within the continental shelf system and would not therefore constitute export production and hence potential sequestration. Total production can be apportioned between new and regenerated production depending on the relative utilization of NO3–N or NH4–N and urea respectively. New production generally results from the input of NO3–N to the euphotic zone via upwelling and/or turbulent diffusion and is the only portion of the total production which, in the long term, constitutes a carbon sink. This principle is modified to address the problem of possible new-production recycling on the continental shelf on short time-scales. Nitrate-uptake experiments conducted in the euphotic zone of aged upwelled and filament water throughout the Benguela yielded values of new production, and the mean of these data was applied to the appropriate areas identified by satellite imagery. New production off the continental shelf during summer 1983/84 attributable to upwelling-derived water was 2,14 × 1013 ± l,77 × 1013 g. An attempt is made to place this value in the context of new-production pathways in the Benguela.  相似文献   

13.
Tidal measurements and a depth-averaged 2D model are used to examine wave progression and circulation in a long, shallow, micro-tidal lagoon in Sri Lanka. Ranges and phase lags for different tidal constituents are used to calibrate the model. A single drag coefficient, Cd = 0.0032, gives almost perfect agreement with data. Current measurements are used for validation of the model. The lagoon tide consists of a combination of progressive and standing waves, where progressive waves dominate in the outer part and standing waves in the inner. A Lagrangian based particle-tracking method is developed to study tidally and wind induced residence times. If tides were the only factor affecting the residual circulation, the residence time inside the narrowest section would be approximately 100 days. Steady winds (of typical monsoon average) decrease the residence times to 60–90 days. Estuarine forcing due to net freshwater supply is not modelled (due to lack of reliable runoff data), but independent, long-term salinity observations and calculations based on volume and salt conservation during periods of negligible freshwater supply (the lagoon is seasonally hypersaline) indicate residence times ranging from 40 to 80 days. Model derived residence times based on tides alone represent a minimum exchange. Even weak forcing, through winds, excess evaporation or freshwater supply efficiently reduces residence times.  相似文献   

14.
Estuaries exhibit a large range in their responses to nitrogen loadings determined in part by characteristics of the driver, such as magnitude and frequency, but also by such intrinsic characteristics as physical/chemical factors (e.g., depth, volume, hypsometry, salinity, turbidity) and biological factors (e.g., nature of ecological communities, trophic interactions). To address the richness of estuarine response to driver variables, the aim ultimately is to establish a simple estuarine classification scheme, beginning with a river-dominated subset of estuarine systems and focusing on the role of water residence time in the estuary. Residence time (or flushing time) is related to other drivers (streamflow, nutrient, and sediment loads) and drives much of the biological response of estuaries because of flushing effects on plankton, temperature, nutrients, and light. Toward this goal, nutrient–phytoplankton–zooplankton (NPZ) models have been used to examine a range of subjects including effects of nutrient limitation and zooplankton predation on phytoplankton dynamics and fish predation. This class of model can admit a wide range of behavior, including multiple steady-states and oscillatory behavior. The NPZ equations include terms for nutrient recycling, phytoplankton settling, benthic regeneration, and zooplankton mortality. Analysis of the equations suggests that both the nature of nitrogen loading (i.e., whether it is correlated with discharge or independent of it) and residence time are critical in determining the steady-state response of the system.  相似文献   

15.
We present a method, based on the concept of age and residence time, to study the water renewal in a semi-enclosed domain. We split the water of this domain into different water types. The initial water is the water initially present in the semi-enclosed domain. The renewing water is defined as the water entering the domain of interest. Several renewing water types may be considered depending on their origin. We present the equations for computing the age and the residence time of a certain water type. These timescales are of use to understand the rate at which the water renewal takes place. Computing these timescales can be achieved at an acceptable extra computer cost.The above-mentioned method is applied to study the renewal of epilimnion (i.e. the surface layer) water in Lake Tanganyika. We have built a finite element reduced-gravity model modified to take into account the water exchange between the epilimnion and the hypolimnion (i.e. the bottom layer), the water supply from precipitation and incoming rivers, and the water loss from evaporation and the only outgoing river. With our water renewal diagnoses, we show that the only significant process in the renewal of epilimnion water in Lake Tanganyika is the water exchange between the epilimnion and the hypolimnion, other phenomena being negligible.  相似文献   

16.
Seawater samples were collected in the lagoon of Nouméa (southwest New Caledonia) along two transects from eutrophic coastal bays to the oligotrophic barrier reef. Land-based emissions to the lagoon were measured with dissolved and particulate concentrations of chromium (Cr) and nickel (Ni), used as tracers of both terrigenous and industrial (Ni ore treatment) activities, as well as dissolved and particulate concentrations of zinc (Zn), used as a tracer of urban effluents. The spatial variability of metal concentrations was related to geochemical and hydrodynamic conditions, i.e., respectively: (1) natural and anthropogenic emission sources, and chemical processes occurring in the water column; and (2) water residence times. The parameter used to describe the residence time of water masses was the local e-flushing time, i.e. the time required for a tracer mass contained within a given station to be reduced by a factor 1/e. High metal concentrations were found in coastal areas (up to 9000 ng dissolved Ni L−1), and steeply decreased with distance from the coast (down to 101 ng dissolved Ni L−1 near the barrier reef) to reach levels similar to those found in remote Pacific waters, suggesting a rapid renewal of waters close to the barrier. Distributions of metals in the lagoon are controlled upstream by land-based emission sources and later chemical processes. Then hydrodynamics constrain metal distributions, as shown by the observed relationship between local e-flushing times and the spatial variability of metal concentrations. In addition, a change in the direction of prevailing winds yielded a decrease of dissolved metal concentrations at the same site by a factor of 2.5 (Cr and Ni) and 2.9 (Zn). It is suggested that the residence time is a key parameter in the control of elemental concentrations in the lagoon waters, as much as land-based emission sources.  相似文献   

17.
利用声学技术于1992年6月在营口鲅鱼固港进行了疏浚物海上倾倒声学试验。研究了疏浚物倾倒后的沉降、扩散和迁移特性,统计得出疏浚物云团垂直尺度、水平尺度及云团中心浓度与时间的关系式;计算了扩散系数,估算了倾倒后水体中疏浚物悬浮颗粒量;得出了云团漂移方向、距离和影响范围以及云团在海中的长存留时间;进而确定了疏浚物倾倒入海后的物理行为和归宿。  相似文献   

18.
The Water Framework Directive (2000/60/EC) requires member states to classify and enhance the ecological quality of water bodies in accordance with their type. To estimate the effect on type of the natural variability of lagoons, we applied a two-dimensional hydrodynamic model to the lagoon of Venice. The model calculated the mean annual spatial distributions of two variables: salinity and residence time. The standard deviation of salinity was also included, in order to estimate the variation of salinity values around the mean, which is associated with the instability of the mean salinity value.A highly detailed numerical grid was calibrated and high-frequency tributary discharge data were used.The simulations, under realistic forcing conditions, are based on the years 2003 and 2005. The former was characterized by low precipitation, around 30% less than the typical value.A comparison of model results and measurements shows the high reliability of the model in reproducing the spatial distribution and temporal evolution of salinity.We found strong inter-annual variation in salinity, standard deviation of salinity and residence time. The effect on the typing process is that the most representative types shift from one category to another.On the basis of the spatial patterns of the variables and their superposition, we identified types that described the bulk of the lagoon.This numerical tool offers support for lagoon management on various levels, in terms of both WFD requirements and other applications, by: (1) providing unbiased and objective zoning indications for the basin; (2) evaluating the response of water quality elements; (3) establishing the reference status of a water body; and (4) establishing a hierarchical division of a lagoon that can be used to select an appropriate number of sampling stations for monitoring.  相似文献   

19.
Mussel farming places a benthic organism in a pelagic environment; it is therefore important to understand the driving force that transports the food to the mussels. The hydrodynamic regimes in the sidearms and embayments in Pelorus Sound are dominated by the lunar tide, and a net estuarine circulation in the main channel flowing inwards along the bottom and outwards along the top. Salinity gradients extend throughout the sound from the river inflows, with strongest density stratification in the sidearms and embayments: nearest the head of the sound. There, the water column is separated at the pycnocline into upper and lower layers which tend to move in different directions or at different velocities. Local circulation patterns modify tidal flushing patterns, producing extended residence times in some embayments, whereas other embayments off the side of the main channel tend to be flushed more rapidly by through‐flow water and have shorter residence times than would otherwise be expected. The changing inflow of fresh water modifies the local hydraulic regimes in the inner sounds, especially during flood conditions.  相似文献   

20.
The recent literature on control of trace metal concentrations and speciation was reviewed. The dominant mechanism in control of concentration for most metals appears to be adsorption on biologically produced particulate matter. Some proportion of the metals removed from the surface waters by this mechanism are put back into solution in deeper water by bacterial decomposition of the particles; as a result, many trace metals display distributions in the water column resembling those of the inorganic nutrients. The residence time, as classically defined, cannot be calculated with sufficient accuracy to provide useful information. Since the main method for removal of trace metals from surface waters appears to be physical and biological, rather than strictly chemical, speciation studies in homogeneous systems, particularly those systems which are completely inorganic, appear unlikely to furnish useful information on actual species distributions in the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号