首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ASCA observations of the two Type Ⅱ AGNs,NGC7314 and NGC 7582,show clear variations in the broad X-ray band(0.4-10keV)on short timescales-10^4s.Spectral analysis indicates that they bot have an absorbed hard X-ray component and an unabsorbed soft“excess” component.To clarify the origin of the latter,we made a cross-correlation analysis of the two components.The results show that,for NGC7314,the soft X-ray variability is proportional to that of the hard X-ray component.This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a “leaking” of the variable hard component.For NGC 7582,there is no detectable variability in the soft component, although there is a definite one in the hard component.This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter,and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

2.
We report on simultaneous optical and X-ray observations of the Seyfert galaxy, NGC 3147. The XMM–Newton spectrum shows that the source is unabsorbed in the X-rays  ( N H < 5 × 1020 cm−2)  . On the other hand, no broad lines are present in the optical spectrum. The origin of this optical/X-rays misclassification (with respect to the Unification Model) cannot be attributed to variability, since the observations in the two bands are simultaneous. Moreover, a Compton-thick nature of the object can be rejected on the basis of the low-equivalent width of the iron Kα line (≃130 eV) and the large ratio between the 2–10 keV and the [O  iii ] fluxes. It seems therefore inescapable to conclude that NGC 3147 intrinsically lacks the Broad-Line Region, making it the first 'true' type 2 Seyfert galaxy.  相似文献   

3.
Chandra observations of the Seyfert-2 galaxies NGC 2110 and NGC 7582 are presented. With the superb spatial resolution of Chandra we found that in NGC 7582 the soft (≤2 keV) and hard (2-10 keV) X-rays are emitted in different regions, consistent with the report by Xue et al. By comparing the present X-ray data with the previous infrared data, we determined that the soft X-ray region is the site of starburst activities. We found no significant temporal variations during our observations. We confirm the previous finding that NGC 2110 and NGC 7582 are flat-spectrum sources. We argue that the flat spectra may result from a cold absorbing material such as envisaged in the “dual absorbed” model. Strong Fe Kα emission feature is detected in 6-7keV. Its equivalent width is so large that it cannot be reproduced by using the Galactic column density of - 10^22 cm^-2.  相似文献   

4.
ASCA observations of the two Type II AGNs, NGC 7314 and NGC 7582, show clear variations in the broad X-ray band (0.4-10keV) on short timescales - 104s. Spectral analysis indicates that they both have an absorbed hard X-ray component and an unabsorbed soft "excess" component. To clarify the origin of the latter, we made a cross-correlation analysis of the two components. The results show that, for NGC 7314, the soft X-ray variability is proportional to that of the hard X-ray component. This indicates that the active nucleus of NGC 7314 must be partially covered and so the soft emission is a "leaking" of the variable hard component. For NGC 7582, there is no detectable variability in the soft component, although there is a definite one in the hard component. This indicates that the variable nucleus of NGC 7582 must be fully blocked by absorbing matter, and the soft emission is most likely the scattered component predicted by the AGN unified model.  相似文献   

5.
6.
7.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

8.
9.
10.
11.
We present a flux variability study of simultaneous RXTE and EUVE observations of the highly variable Seyfert galaxy NGC 4051. We find a strong correlation between variability in the EUV and medium-energy X-ray bands, indicating that both are sampling the same power-law continuum. The lag between the two bands is less than 20 ks and, depending on model assumptions, may be <1 ks. We examine the consequences of such a small lag in the context of simple Comptonization models for the production of the power-law continuum. A lag of <1 ks implies that the size of the Comptonizing region is less than 20 Schwarzschild radii for a black hole of mass >106 M.  相似文献   

12.
13.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

14.
The formerly X-ray reflection-dominated Seyfert 2 galaxy NGC 6300   总被引:1,自引:0,他引:1  
In this paper, a BeppoSAX observation of the bright Seyfert 2 galaxy NGC 6300 is presented. The rapidly variable emission from the active nucleus is seen through a Compton-thin     absorber. A Compton-reflection component with an unusually high reflection fraction     , and the comparison with a reflection-dominated spectrum measured by RXTE two and half years earlier suggest that NGC 6300 belongs to the class of 'transient' active galactic nucleus, undergoing long and repeated periods of low activity. The spectral transition provides support to the idea that Compton-thick and Compton-thin X-ray absorbers in Seyfert 2 galaxies are decoupled, the former being most likely associated with the 'torus', whereas the latter is probably located at much larger distances.  相似文献   

15.
16.
We examine the XMM X-ray spectrum of the low-ionisation nuclear emission-line region (LINER)-AGN NGC 7213, which is best fit with a power law, Kα emission lines from Fe i, Fe xxv and Fe xxvi and a soft X-ray collisionally ionised thermal plasma with kT = 0.18+0.03−0.01 keV. We find a luminosity of 7× 10−4 LEdd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M 81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).  相似文献   

17.
We report on simultaneous ASCA and ROSAT observations of the Seyfert galaxy NGC 5548 made during the ASCA Performance Verification phase. Spectral features due to a warm absorber and reflection are clearly seen in the X-ray spectra. We find that the continuum spectral shape differs between the ASCA and ROSAT data sets. The photon-index obtained from the ROSAT PSPC exceeds that from the ASCA SIS ΔΓ≈0.4. The discrepancy is clear even in the 0.5–2 keV energy band over which both detectors are sensitive. The spectra cannot be made consistent by choosing a more complex model. The problem likely lies in the response curve (estimated effective area) of one, or both, detectors. There may be important consequences for a wide range of published results.  相似文献   

18.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

19.
20.
We present evidence of flux variability, on both short (hours) and long (months) time-scales, of the Seyfert 2 galaxy NGC 7172. These results are based on the ASCA observation of NGC 7172 performed in 1996 May. The source was detected at a rather low flux level, about 3 times fainter than its usual state (including 1 yr before, when it was also observed by ASCA ).   The source also varied by about 30 per cent during the observation, confirming the presence of a type 1 nucleus in its centre. However, its spectrum appears to be flatter than the typical Seyfert 1 spectrum (in agreement with findings on other Seyfert 2s), posing problems for the unification model unless complex absorption is invoked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号