首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have re-analysed all of the Submillimetre Common User Bolometer Array (SCUBA) archive data of the Orion star-forming regions. We have put together all of the data taken at different times by different groups. Consequently, we have constructed the deepest submillimetre maps of these regions ever made. There are four regions that have been mapped: Orion A North and South, and Orion B North and South. We find that two of the regions, Orion A North and Orion B North, have deeper sensitivity and completeness limits, and contain a larger number of sources, so we concentrate on these two. We compare the data with archive data from the Spitzer Space Telescope to determine whether or not a core detected in the submillimetre is pre-stellar in nature. We extract all of the pre-stellar cores from the data and make a histogram of the core masses. This can be compared to the stellar initial mass function (IMF). We find the high-mass core mass function (CMF) follows a roughly Salpeter-like slope, just like the IMF, as seen in previous work. Our deeper maps allow us to see that the CMF turns over at,  ∼1.3 M  about a factor of 4 higher than our completeness limit. This turnover has never previously been observed, and is only visible here due to our much deeper maps. It mimics the turnover seen in the stellar IMF at  ∼0.1 M  . The low-mass side of the CMF is a power law with an exponent of, 0.35 ± 0.2 which is consistent with the low-mass slope of the young cluster IMF of 0.3 ± 0.1. This shows that the CMF continues to mimic the shape of the IMF all the way down to the lower completeness limit of these data at  ∼0.3 M  .  相似文献   

2.
We report observations of the 4765-MHz maser transition of OH (2Π1/2, J=1/2, F=1→0) towards 57 star-forming regions, taken with the 32-m Toruń telescope. Nine maser sources were detected, of which two had not been reported previously. The newly discovered sources in W75N and Cep A and four previously known sources were monitored over periods ranging from a few weeks to six months. Significant variations of the maser intensity occurred on time-scales of one week to two months. The relationships between the flux density and the linewidth for the new sources, established during the rise and fall phases of bursts that lasted 6–8 weeks, are consistent with a model of saturated masers.  相似文献   

3.
High-resolution far-infrared observations of a large area of the star-forming complex RCW 106 obtained using the TIFR 1-m balloon-borne telescope are presented. Intensity maps have been obtained simultaneously in two bands centred around 150 and 210 μm. Intensity maps have also been obtained in the four IRAS bands using HIRES-processed IRAS data. From the 150- and 210-μm maps, reliable maps of dust temperature and optical depth have been generated. The star formation in this complex has occurred in five linear sub-clumps. Using the map at 210 μm, which has a spatial resolution superior to that of IRAS at 100 μm, 23 sources have been identified. The spectral energy distribution (SED) and luminosity of these sources have been determined using the associations with the IRAS maps. The luminosity distribution of these sources has been obtained. Assuming these embedded sources to be zero-age main-sequence stars and using the mass–luminosity relation for these, the power-law slope of the initial mass function is found to be −1.73±0.5 . This index for this very young complex is about the same as that for more evolved complexes and clusters. Radiation transfer calculations in spherically symmetric geometry have been undertaken to fit the SEDs of 13 sources with fluxes in both the TIFR and the IRAS bands. From this, the r −2 density distribution in the envelopes is ruled out. Finally, a correlation is seen between the luminosity of embedded sources and the computed dust masses of the envelopes.  相似文献   

4.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

5.
We present results from a survey of the Rosette Molecular Cloud (RMC) using both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) onboard the Spitzer Space Telescope . We have mapped a region of active star formation covering an area approximately 1° by 1.5° including several previously known clusters. Spectral energy distributions (SEDs) fitted to our data combined with that from Two Micron All Sky Survey (2MASS) are used to identify young stellar objects (YSOs) with infrared (IR) excesses. We find that roughly 50 per cent of the sources are forming in clustered environments and identify seven clusters of IR excess sources including four that were previously unknown. We investigate evidence for triggering of star formation due to the ionization front, identified in Brackett-α emission, associated with the young open cluster NGC 2244. Although the position of several of the clusters of IR excess sources are coincident with the ionization front, the bulk of the youngest YSOs are located far from the ionization front, in clusters located along the mid-plane of the cloud. We conclude that although triggering from the H  ii nebula is a possible origin for some of the recent star formation, the majority of the active star formation is occurring in already dense regions of the cloud not compressed by the expansion of the H  ii region.  相似文献   

6.
We have used the Australia Telescope Compact Array (ATCA) to make high-resolution images of the 6.7-GHz 51 → 60A+ maser transition of methanol towards 33 sources in the Galactic plane. Including the results from 12 methanol sources in the literature, we find that 17 out of 45 sources have curved or linear morphology. Most of the 17 have a velocity gradient along the line, which is consistent with masers lying in an edge-on circumstellar disc surrounding a massive star. We also made simultaneous continuum observations of the sources at 8.6 GHz, in order to image any associated H  ii region. 25 of the sources are associated with an ultracompact H  ii region, with a detection limit of ∼0.5 mJy beam−1. We argue that the methanol sources without an associated H  ii region represent less massive embedded stars, not an earlier stage in the lifetime of the star, as previously suggested.  相似文献   

7.
Maps of the 450- and 850-μm dust continuum emission from three star-forming condensations within the Lynds 1630 molecular cloud, made with the SCUBA bolometer array, reveal the presence of four new submillimetre sources, each of a few solar masses (two of which are probably class I and two of which are class 0), as well as several sources the existence of which was previously known. The sources are located in filaments and appear elongated when observed at 450 μm. They probably have dust temperatures in the range 10 to 20 K, in good agreement with previous ammonia temperature estimates. Attempts to fit their structures with power-law and Gaussian density distributions suggest that the central distribution is flatter than expected for a simple singular isothermal sphere.
Although the statistics are poor, our results suggest that the ratio of 'protostellar core' mass to total virial mass may be similar for both large and small condensations.  相似文献   

8.
We have compared the results of a number of published class I methanol maser surveys with the catalogue of high-mass outflow candidates identified from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire survey (known as extended green objects or EGOs). We find class I methanol masers associated with approximately two-thirds of EGOs. Although the association between outflows and class I methanol masers has long been postulated on the basis of detailed studies of a small number of sources, this result demonstrates the relationship for the first time on a statistical basis. Despite the publication of a number of searches for class I methanol masers, a close physical association with another astrophysical object which could be targeted for the search is still lacking. The close association between class I methanol masers and EGOs therefore provides a large catalogue of candidate sources, most of which have not previously been searched for class I methanol masers. Interstellar masers and outflows have both been proposed to trace an evolutionary sequence for high-mass star formation, therefore a better understanding of the relationship between class I methanol masers and outflow offers the potential for comparison and amalgamation of these two evolutionary sequences.  相似文献   

9.
The fields of eight X-ray sources in the Magellanic Clouds believed to be Be/X-ray binaries have been searched for possible Be-star counterparts. BVR c and H α CCD imaging was employed to identify early-type emission stars through colour indices and H α fluxes. Spectroscopy of five sources confirms the presence of H α emission in each case. Based on the positional coincidence of emission-line objects with the X-ray sources, we identify Be-star counterparts to the ROSAT sources RX J0032.9-7348, RX J0049.1-7250, RX J0054.9-7226 and RX J0101.0-7206, and to the recently discovered ASCA source AX J0051-722. We confirm the Be star nature of the counterpart to the HEAO1 source H0544-66. In the field of the ROSAT source RX J0051.8-7231 we find that there are three possible counterparts, each showing evidence for H α emission. We find a close double in the error circle of the EXOSAT source EXO 0531.1-6609, each component of which could be a Be star associated with the X-ray source.  相似文献   

10.
The International Gamma-Ray Astrophysics Laboratory observatory has been (re-)discovering new X-ray sources since the beginning of nominal operations in early 2003. These sources include X-ray binaries, active galactic nuclei, cataclysmic variables, etc. Amongst the X-ray binaries, the true nature of many of these sources has remained largely elusive, though they seem to make up a population of highly absorbed high-mass X-ray binaries. One of these new sources, IGR J19140+0951, was serendipitously discovered on 2003 March 6 during an observation of the galactic microquasar GRS 1915+105. We observed IGR J19140+0951 with the United Kingdom Infrared Telescope in order to identify the infrared counterpart. Here we present the H - and K -band spectra. We determined that the companion is a B0.5-type bright supergiant in a wind-fed system, at a distance ≲5 kpc.  相似文献   

11.
We present a survey of molecular gas in theJ = 1 → 0 transition of12CO towards the IRAS Vela Shell. The shell, previously identified from IRAS maps, is a ring-like structure seen in the region of the Gum Nebula. We confirm the presence of molecular gas associated with some of the infrared point sources seen along the shell. We have studied the morphology and kinematics of the gas and conclude that the shell is expanding at the rate of ~ 13 km s-1 from a common center. We go on to include in this study the Southern Dark Clouds seen in the region. The distribution and motion of these objects firmly identify them as being part of the shell of molecular gas. Estimates of the mass of gas involved in this expansion reveal that the shell is a massive object comparable to a GMC. From the expansion and various other signatures like the presence of bright-rimmed clouds with head-tail morphology, clumpy distribution of the gas etc., we conjecture that the molecular gas we have detected is the remnant of a GMC in the process of being disrupted and swept outwards through the influence of a central OB association, itself born of the parent cloud.  相似文献   

12.
We present a study of active star-forming regions in the environs of the H  ii region Sh2-205. The analysis is based on data obtained from point source catalogues and images extracted from the Two-Micron All-Sky Survey (2MASS), Midcourse Space Experiment ( MSX ) and IRAS surveys. Complementary data are taken from a CO survey. The identification of primary candidates for star-formation activity is made following colour criteria and a correlation with molecular gas emission.
A number of star-formation tracer candidates are projected on to two substructures of the H  ii region: SH 148.83–0.67 and SH 149.25–0.00. However, the lack of molecular gas related to these structures casts doubt on the nature of the sources. Additional infrared sources may be associated with the H  i shell centred at  ( l , b ) = (149°0', −1°30')  .
The most striking active area was found in connection with the H  ii region LBN 148.11–0.45, where star-formation candidates are projected on to molecular gas. The analytical model of the 'collect and collapse' process shows that star-formation activity could have been triggered by the expansion of this H  ii region.  相似文献   

13.
We report the results of a submillimetre continuum emission survey targeted towards 78 star formation regions, 72 of which are devoid of methanol maser and UC H  ii  regions, identified in the Swedish ESO Submillimetre Telescope (SEST)/SEST IMaging Bolometer Array (SIMBA) millimetre continuum survey of Hill et al. At least 45 per cent of the latter sources, dubbed 'mm-only', detected in this survey are also devoid of the mid-infrared MSX  emission. The 450- and 850-μm continuum emission was mapped using the Submillimetre Common User Bolometer Array (SCUBA) instrument on the James Clerk Maxwell Telescope (JCMT). Emission is detected towards 97 per cent of the 78 sources targeted as well as towards 28 other SIMBA sources lying in the SCUBA fields.
In total, we have identified 212 cores in this submillimetre survey, including 106 previously known from the SIMBA survey. Of the remaining 106 sources, 53 result from resolving a SIMBA source into multiple submillimetre components, whilst the other 53 sources are submillimetre cores, not seen in the SIMBA. Additionally, we have identified two further mm-only sources in the SIMBA images. Of the total 405 sources identified in the SIMBA survey, 255 are only seen at millimetre wavelengths.
We concatenate the results from four (sub)millimetre continuum surveys of massive star formation, together with the Galactic plane map of Pierce-Price et al. in order to determine the dust grain emissivity index β for each of the sources in the SIMBA source list. We examine the value of β with respect to temperature, as well as for the source classes identified in the SIMBA survey, for variation of this index. Our results indicate that β is typically 2, which is consistent with previous determinations in the literature, but for a considerably larger sample than previous work.  相似文献   

14.
We present a statistical analysis of 482 6.7 GHz methanol maser sources from the available literature, on their maser emission and the characteristics of their associated infrared sources. On the color-color diagram, more than 70% of the objects fall within a very small region (0.57 ≤ [25 - 12] ≤ 1.30 and 1.30 ≤[60 - 12] ≤ 2.50). This suggests that 6.7 GHz methanol maser emission occurs only within a very short evolutionary phase during the earliest stage of star formation. The velocity ranges of the masers belong to two main groups: one from 1 to 10 km s^-1, and one from about 11 to 20 km s^-1. These velocity ranges indicate that the masers are probably associated with both disks and outflows. The correlations between the maser and infrared flux densities, and between the maser and infrared luminosities, suggest that far-infrared radiation is a possible pumping mechanism for the masers which most probably originate from some outer molecular envelopes or disks.  相似文献   

15.
We have mapped the high-mass star-forming region W49A at 450, 800, and 1100 microns with the JCMT. Spectral index measurements suggest an increase in temperature towards the emission peaks, consistent with previous data. We derive the gas masses associated with the central and extended emission from each of the three components, and find a deficit of gas around W49SW. The mass found for the core of W49N is in good agreement with the value previously derived from C34S (5-4) maps (Serabynet al., 1993), and similar morphologies are found in the line and continuum maps.  相似文献   

16.
We have earlier investigated the surface structures of a late‐type, single, giant FK Com for the years 1994–1998 using Doppler imaging. These surface temperature maps revealed long‐lived active regions at high latitudes. Long‐term photometric observations also show that these active regions tend to occur at two permanent active longitudes which are 180 degrees apart from each other, and that the activity switches the longitude with an average period of about 3 years (the “flip‐flop” phenomenon). In this work we present new Doppler maps of FK Com obtained 1998‐2003 and light‐curve maps obtained 2002–2003. These new maps are investigated together with the earlier temperature maps and light‐curve maps, with an aim of further studying the active longitudes, “flip‐flop” phenomenon and surface differential rotation on FK Com. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
恒星形成于分子云之中, 分子外向流是恒星形成正在进行的重要动力学特征, 也是研究和认识恒星形成的重要契入点. 利用紫金山天文台青海观测站德令哈13.7m毫米波望远镜, 采用5种分子谱线探针(包括12CO、13CO、C18O、HCO$^+$ $J=1-0$和CS $J=2-1$, J为角动量量子数), 对一个包含IRAS 19230+1506、IRAS 19232+1504和G050.3179--00.4186这3个源的大质量恒星形成复合体进行了成图观测研究. 通过对以上分子谱线数据并结合红外波段巡天数据的分析, 在这3个源中首次探测到了分子外向流活动, 并确定了分子外向流的中心驱动源. 最后对这3个源进行了分子外向流相关物理量参数的计算, 分析了这些物理量参数之间的关系, 结果表明分子外向流的性质与中心驱动源的性质息息相关.  相似文献   

18.
We present high-resolution observations made with the Very Large Array (VLA) in its A configuration at frequencies between 5 and 43 GHz of a sample of five massive young stellar objects (YSOs): Lk Hα101, NGC 2024-IRS2, S106-IR, W75N and S140-IRS1. The resolution varied from 0.04 arcsec (at 43 GHz) to 0.5 arcsec (at 5 GHz), corresponding to a linear resolution as high as 17 au for our nearest source. A MERLIN observation of S106-IR at 23 GHz with 0.03-arcsec resolution is also presented. S106-IR and S140-IRS1 are elongated at 43 GHz perpendicular to their large-scale bipolar outflows. This confirms the equatorial wind picture for these sources seen previously in MERLIN 5-GHz observations. The other sources are marginally resolved at 43 GHz. The spectral indices we derive for the sources in our sample range from +0.2 to +0.8, generally consistent with ionized stellar winds. We have modelled our sources as uniform, isothermal spherical winds, with Lk Hα101 and NGC 2024-IRS2 yielding the best fits. However, in all cases our fits give wind temperatures of only 2000–5000 K, much less than the effective temperatures of main-sequence stars of the same luminosity, a result which is likely due to the clumpy nature of the winds.  相似文献   

19.
We present Australia Telescope Compact Array observations towards six massive star formation regions, which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hypercompact H  ii regions. However, the properties of the ionized gas derived from the 19 to 93 GHz continuum emission and  H70α+ H57α  radio recombination line data show the majority of these sources are, in fact, regions of spatially extended, optically thin free–free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial filtering, poor surface brightness sensitivity and primary beam attenuation.
We consider the implications that a significant number of these extended H  ii regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that six contain previously undetected extended free–free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCH  ii region formation, they are, in fact, associated with extended H  ii regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ∼0.5 Jy) from free–free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ∼2.  相似文献   

20.
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6−723533) and 700 s (CXOU J010206.6−714115), and present observations of two previously known pulsars RX J0057.3−7325 (SXP101) and SAX J0103.2−7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6−714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a subset of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour–colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号