首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Lifeline systems have been heavily damaged during past earthquakes; this has often been attributed to the effect of differential ground motion at the supports of these long structures. Based on a stochastic model for the ground excitation the responses of pipelines and bridges of various span lengths subjected to either perfectly or partially correlated random input motions in the axial, lateral (i.e. transverse horizontal) and vertical directions are investigated and the significance of the spatial variation of ground motion is examined.  相似文献   

2.
3.
This paper presents a study of the influence of spatially variable ground motions on the longitudinal seismic response of a short, three-span, 30-degree skewed, reinforced concrete highway bridge. Linear and nonlinear finite element models are created for the bridge and linear elastic and nonlinear inelastic time history analyses conducted. Three different types of illustrative excitations are considered: The first utilizes spatially variable ground motions incorporating the effects of variable soil conditions, loss of coherency and wave passage as input motions at the structures' supports. The time history with the smallest peak displacement and the one with the largest peak displacement from the spatially variable ones are then used as uniform input motions at all bridge supports. The comparative analysis of the bridge model shows that the uniform ground motion input with the largest peak displacement cannot provide conservative seismic demands for all structural components—in a number of cases it results in lower response than that predicted by spatially variable motions. The present results indicate that there is difficulty in establishing uniform input motions that would have the same effect on the response of bridge models as spatially variable ones. Consequently, spatially variable input motions need to be applied as excitations at the bridge supports.  相似文献   

4.
在近断层地震动下桥梁结构将发生较大反应,减隔震设计是减轻地震损伤的重要手段。提出了在桥梁双柱墩横桥向设置防屈曲支撑(BRB),在纵桥向设置铅芯橡胶支座(LRB)的双向减隔震体系。利用Midas Civil软件建立3种不同减隔震方式的桥梁结构模型:LRB仅单向,LRB双向与LRB联合BRB,运用非线性时程分析方法计算了桥墩反应(墩顶侧移角、残余位移角和曲率延性)、LRB支座变形和BRB的耗能特性等。结果表明:在近断层地震动输入下联合设置LRB和BRB的双向减隔震桥梁减震效果明显,相比其它2种方式,能有效降低墩柱的塑性变形及起到保护桥墩的作用。在横桥向,桥墩最大侧移角、残余位移角和最大曲率延性系数都显著降低。  相似文献   

5.
研究了地震地面运动多点激励,即空间变化效应对装有铅芯橡胶支座(Lead Rubber Bearing)的连续梁桥地震反应的影响。首先,利用三角级数法生成了拟合规范反应谱的多点人工地震动时程;然后利用非线性时程分析法数值仿真并比较了某五跨LRB隔震连续梁桥在一致激励、仅考虑地震动行波效应、仅考虑地震动部分相干效应、同时考虑行波和部分相干效应以及同时考虑行波、部分相干和局部场地土效应等七种工况下结构的减震效果。行波效应和部分相干效应对铅芯橡胶支座隔震桥梁影响不大,而局部场地土效应对该类桥梁的地震反应分析影响很大,应该引起重视。  相似文献   

6.
Pounding between adjacent bridge structures with insufficient separation distance has been identified as one of the primary causes of damage in many major earthquakes. It takes place because the closing relative movement is larger than the structural gap provided between the structures. This relative structural response is controlled not only by the dynamic properties of the participating structures but also by the characteristics of the ground excitations. The consequence of the spatial variation of ground motions has been studied by researchers; however, most of these studies were performed numerically. The objective of the present research is to experimentally evaluate the influence of spatial variation of ground motions on the pounding behaviour of three adjacent bridge segments. The investigation is performed using three shake tables. The input spatially varying ground excitations are simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock using an empirical coherency loss function. Results confirm that the spatially nonniform ground motions increase the relative displacement of adjacent bridge girders and pounding forces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a computational procedure for the conditional simulation of spatially variable seismic ground motions for long span bridges with multiple supports. The seismic ground motions, with part of their time histories measured at some supports, are regarded as zero‐mean nonstationary random processes characterized by predefined evolutionary power spectral density. To conditionally simulate unknown seismic ground motion time histories at other supports, the Kriging method is first described briefly for the conditional simulation of a random vector comprised of zero‐mean Gaussian variables. The multivariate oscillatory processes characterized by the evolutionary power spectral density matrix are then introduced, and the Fourier coefficients of the oscillatory processes and their covariance matrix are derived. By applying the Kriging method to the random vector of the Fourier coefficients and using the inverse Fourier transform, unknown nonstationary seismic ground motion time histories can be simulated. A numerical example is selected to demonstrate capabilities of the proposed simulation procedure, and the results show that the procedure can ensure unbiased time‐varying correlation functions, especially the cross correlation between known and unknown time histories. The procedure is finally applied to the Tsing Ma suspension bridge in Hong Kong to generate ground accelerations at its multiple supports using limited seismic records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Long-period structures(e.g. Isolated structures) tend to produce pseudo-resonance with low frequency components of long-period ground motions, resulting in the increase in damage. Stiffness mutation occurs due to the setback in the upper body of the large chassis structure. In the parts with stiffness mutation, the torsion effect caused by the tower is far greater than that of the chassis itself. In this study, a total of 273 ground motions are collected and then filtered into four types, including the near-field ordinary, near-field pulse, far-field ordinary, and farfield harmonic. An 8-degree(0.2 g) fortified large chassis base-isolated structure is established. Furthermore,ETABS program software is used to conduct nonlinear time history analysis on the isolation and seismic model under bi-directional earthquake ground motions. The comparison results show that the seismic isolation effect of the base-isolated structure under long-period ground motions is worse than that associated with ordinary ground motions when the seismic response reduction rate of the large base floor significantly decreases compared with that of the tower. When the inter-story displacement angle and the displacement of isolation layer of the chassis exceeds the limit of Code for Seismic Design of Buildings(GB 50011-2010), it is recommended to adopt composite seismic isolation technology or add limit devices. Under the condition of long-period ground motions, the baseisolated structure reduces the lateral-torsional coupling effect of the large chassis structure, while the torsion response of large chassis' top layer increases. Under long-period ground motions with the same acceleration peak,the response of the base-isolated structure increases much more than that of the seismic structure and the consideration of this impact is suggested to be added to the Code.  相似文献   

9.
针对斜交桥在破坏性地震中发生破坏和损伤的突出问题,采用铅芯橡胶支座(LRB)进行隔震和滞回耗能。基于OpenSees平台建立了不同斜度的传统非隔震和全桥采用LRB隔震的4跨斜交连续梁桥动力分析模型,沿2个水平方向输入远场地震动和具有向前方向性效应、滑冲效应以及无速度脉冲效应的近断层地震动,并进行非线性时程计算,研究桥墩和挡块的损伤状态、主梁旋转度、碰撞力与斜交桥斜度的关系以及LRB对斜交桥抗震性能的影响。结果表明:向前方向性效应和滑冲效应的脉冲型地震动作用下的斜交桥地震反应和损伤明显大于无速度脉冲近断层和远场地震动作用; 采用LRB隔震后,明显降低了固定墩的地震损伤,桥墩位移减震率可达到50%以上; LRB隔震桥主梁与挡块的间隙宜结合桥梁的地震风险和设计位移进行确定。  相似文献   

10.
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。  相似文献   

11.
为了研究近断层地震动速度脉冲及强竖向地震动对风机塔地震响应的影响,以某陆上风电场1.5 MW风机塔为研究对象开展了结构在水平向脉冲型地震动、水平向非脉冲型地震动、水平与竖向地震动组合3种地震输入工况的时程分析。通过3种工况下塔顶位移时程、加速度时程、塔底剪力、弯矩及轴力的对比分析发现:近断层速度脉冲对结构塔顶水平位移、塔顶水平加速度、塔底剪力与弯矩均影响显著;竖向地震动会加大结构的塔顶竖向加速度响应及塔底轴力响应;随着竖向与水平加速度峰值比增大,塔顶竖向加速度响应增大,最大轴力随着峰值比增大而增大,最小轴力随着峰值比增大而减小。此外,增量动力分析表明,采用自接触的有限元模型可以更真实地预测风机塔的失稳破坏机制。  相似文献   

12.
Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three-dimensional finite-element analyses. Results of the analyses show that the spatially variable ground motion causes longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the properties of the ground change in the longitudinal direction.  相似文献   

13.
本文基于随机地震动场的功率谱模型和多点地震激励,建立了大跨度桥梁在随机地震动场多点激励的地震反应分析方法,并数值模拟了某四跨预应力混凝土连续刚构桥的地震反应,考虑了行波效应、部分相干效应和局部场地效应等因素的影响,并与确定性地震一致激励下的计算结果进行了比较。对工程建设具有参考意义。  相似文献   

14.
龚浩  张洪豪  徐略勤    张令 《世界地震工程》2022,38(3):117-126
为了揭示近断层地震作用下上承式钢筋混凝土拱桥的动力响应特点,以西南山区某上承式拱桥为背景,用OpenSEES平台建立了全桥非线性动力分析模型,探讨了近断层地震动的输入方式、脉冲效应和竖向地震动等三个关键因素对桥梁动力响应的影响规律。研究结果表明:地震输入方式对拱圈地震响应的影响较小,但对拱上立柱地震响应的影响很大,尤其是拱顶附近的短立柱,在抗震分析中,建议偏安全地采用三向地震输入方式;脉冲效应对拱桥地震响应的影响非常大,会导致拱圈、拱上立柱和桥面板地震响应大幅增加,桥面板残余平面转角甚至增大6倍以上;竖向地震动对拱圈轴力和面内弯矩、拱上立柱纵向弯矩和剪力的影响很大,拱顶处的面内弯矩放大倍数最大可达2.95,总体来说,采用规范所建议的方法考虑竖向地震是偏保守的。  相似文献   

15.
The performance‐based design of lifeline systems requires spatially variable seismic excitations at the structures' supports that are consistent with prescribed seismic ground motion characteristics and an appropriate spatial variability model—such motions can be obtained through conditional simulation. This work revisits the concept of conditional simulation and critically examines the conformity of the generated motions with the characteristics of the target random field and observations from data recorded at dense instrument arrays. Baseline adjustment processing techniques for recorded earthquake accelerograms are extended to fit the requirements of simulated and conditionally simulated spatially variable ground motions. Emphasis is placed on the use of causal vs acausal filtering in the data processing. Acceleration, velocity and displacement time histories are evaluated in two example applications of the approach. The first application deals with a prescribed synthetic time history that incorporates nonstationarity in the amplitude and frequency content of the motions and depends on earthquake magnitude, source–site distance and local soil conditions; this example results in zero residual displacements. The second application considers as prescribed time history a recording in the vicinity of a fault and yields nonzero residual displacements. It is shown that the conditionally simulated time histories preserve the characteristics of the prescribed ones and are consistent with the target random field. The results of this analysis suggest that the presented methodology provides a useful tool for the generation of spatially variable ground motions to be used in the performance‐based design of lifeline systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segm...  相似文献   

17.
The Vincent Thomas Bridge in the Los Angeles metropolitan area, is a critical artery for commercial traffic flow in and out of the Los Angeles Harbor, and is at risk in the seismically active Southern California region, particularly because it straddles the Palos Verdes fault zone. A combination of linear and non‐linear system identification techniques is employed to obtain a complete reduced‐order, multi‐input–multi‐output (MIMO) dynamic model of the Vincent Thomas Bridge based on the dynamic response of the structure to the 1987 Whittier and 1994 Northridge earthquakes. Starting with the available acceleration measurements (which consists of 15 accelerometers on the bridge structure and 10 accelerometers at various locations on its base), an efficient least‐squares‐based time‐domain identification procedure is applied to the data set to develop a reduced‐order, equivalent linear, multi‐degree‐of‐freedom model. Although not the main focus of this study, the linear system identification method is also combined with a non‐parametric identification technique, to generate a reduced‐order non‐linear mathematical model suitable for use in subsequent studies to predict, with good fidelity, the total response of the bridge under arbitrary dynamic environments. Results of this study yield measurements of the equivalent linear modal properties (frequencies, mode shapes and non‐proportional damping) as well as quantitative measures of the extent and nature of non‐linear interaction forces arising from strong ground shaking. It is shown that, for the particular subset of observations used in the identification procedure, the apparent non‐linearities in the system restoring forces are quite significant, and they contribute substantially to the improved fidelity of the model. Also shown is the potential of the identification technique under discussion to detect slight changes in the structure's influence coefficients, which may be indicators of damage and degradation in the structure being monitored. Difficulties associated with accurately estimating damping for lightly damped long‐span structures from their earthquake response are discussed. The technical issues raised in this paper indicate the need for added spatial resolution in sensor instrumentation to obtain identified mathematical models of structural systems with the broadest range of validity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Seismic risk analysis and mitigation of spatially extended structures require the synthesis of spatially varying ground motions in the response history analysis of these structures. These synthetic motions are usually desired to be spatially correlated, site reflected, nonstationary, and compatible with target design response spectra. In this paper, a method is presented for simulating spatially varying ground motions considering the nonstationarity, local site effects, and compatibility of response spectra. The scheme for generating spatially varying and response spectra compatible ground motions is first established for spatial locations on the ground surface with varying site conditions. The design response spectrum is introduced as the “power” spectrum at the base rock. The site amplification approach is then derived based on the deterministic wave propagation theory, by assuming that the base rock motions consist of out-of-plane SH wave or in-plane combined P and SV waves propagating into the site with assumed incident angles, from which tri-directional spatial ground motions can be generated. The phase difference spectrum is employed to model ground motions exhibiting nonstationarity in both frequency and time domains with different site conditions. The proposed scheme is demonstrated with numerical examples.  相似文献   

19.

Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of efficiency, sufficiency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-field pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specific energy density (SED) followed by \(\sqrt {VSI[{\omega _1}(PGD + RM{S_d})]} \) are the optimal IMs based on efficiency, sufficiency and scaling robustness for seismic response evaluation of buried pipelines under near-field ground motions.

  相似文献   

20.
The response of continuous two- and three-span beams of various lengths subjected to spatially varying seismic ground motions is evaluated. Stochastic representations of the seismic ground motions are used as input at the supports of the structures, and sensitivity analyses of the response with respect to the degree of correlation between the support motions are performed. The validity of the commonly used assumption of equal support motion is examined. Square-roots of mean-square values of total displacements, bending moments and shear forces are outputs of the analyses. The results indicate that fully correlated motions may produce higher or lower response than partially correlated motions, depending on the dynamic characteristics of the structure, the response quantity (bending moment or shear force) that is evaluated, the position along the axis of the beam where the response quantity is evaluated, the separation between the natural frequencies of the structure and the dominant frequencies of the input motions, and on the degree of partial correlation between the support motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号