首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new set of parameters for the total plate tectonic reconstruction of South America and south central Africa is presented: euler pole 46.75°N, 32.65°W; rotation angle 56.40°. This fit is constrained by at least three pre-drift tectonic features crossing from one continent to the other: (1) the geophysically defined eastern and western boundaries of the submarine Jurassic Outeniqua Basin (South Africa) and the Falkland Plateau Basin; (2) the Late Precambrian transcurrent fault and mylonite belts of Pernambuco (Brazil) and Foumban (West Africa); and (3) the Triassic northern tectonic front of the Cape Fold Belt and the major morphological feature on the Falkland Plateau with which it is closely lined up. Isotopic ages of Falkland Plateau gneisses correspond to Cape Pluton and Cape Fold Belt ages, suggesting their palaeoposition was within the realm of the Cape Fold Belt.In addition, the bathymetrically and geophysically defined northeastern apex of the Falkland Plateau fits into the re-entrant angle defined on the South African margin by the steep southeast-facing sheared Agulhas margin and the southern face of the Tugela Cone. Simultaneously known Precambrian outcrops in northeastern Brazil and in the Gulf of Benin area of West Africa are juxtaposed rather than overlapped. Reconstructions producing a closer fit of these cratonic areas are considered untenable.  相似文献   

2.
The Qinling Orogenic Belt is divided commonly by the Fengxian-Taibai strike-slip shear zone and the Huicheng Basin into the East and West Qinling mountains,which show significant geological differences after the Indosinian orogeny.The Fengxian-Taibai fault zone and the Meso-Cenozoic Huicheng Basin,situated at the boundary of the East and West Qinling,provide a natural laboratory for tectonic analysis and sedimentological study of intracontinental tectonic evolution of the Qinling Orogenic Belt.In order to explain the dynamic development of the Huicheng Basin and elucidate its post-orogenic tectonic evolution at the junction of the East and West Qinling,we studied the geometry and kinematics of fault zones between the blocks of West Qinling,as well as the sedimentary fill history of the Huicheng Basin.First,we found that after the collisional orogeny in the Late Triassic,post-orogenic extensional collapse occurred in the Early and Middle Jurassic within the Qinling Orogenic Belt,resulting in a series of rift basins.Second,in the Late Jurassic and Early Cretaceous,a NE-SW compressive stress field caused large-scale sinistral strike-slip faults in the Qinling Orogenic Belt,causing intracontinental escape tectonics at the junction of the East and West Qinling,including eastward finite escape of the East Qinling micro-plate and southwest lateral escape of the Bikou Terrane.Meanwhile,the strike-slip-related Early Cretaceous sedimentary basin was formed with a right-order echelon arrangement in sinistral shear zones along the southern margin of the Huicheng fault.Overall during the Mesozoic,the Huicheng Basin and surrounding areas experienced four tectonic evolutionary stages,including extensional rift basin development in the Early and Middle Jurassic,intense compressive uplift in the Late Jurassic,formation of a strike-slip extensional basin in the Early Cretaceous,and compressive uplift in the Late Cretaceous.  相似文献   

3.
A joint inversion of gravity and geoelectrical data has been performed along a 100 km long profile across the oil-bearing Potiguar rift basin in NE Brazil. The integrated approach is based on the connection between density and resistivity of a sedimentary sequence through the porosity. Seventy-one gravity stations and twenty-nine vertical electrical soundings were carried out across the central part of the Early Cretaceous basin in the Precambrian Borborema Province to apply the proposed joint inversion. Both the physical properties and geometry of the multilayer deep model were well constrained by a wide set of prior information obtained by surface mapping, geophysical logs and seismic sections. The results reveal a rift architecture formed by a 5000 m thick half-graben structure separated by an intervening basement high and an extensive adjacent platform with a sedimentary infill of about 300 m thick. The calculated model shows geometries for the sedimentary density/resistivity interfaces in agreement with the seismostratigraphic sequences revealed by seismic section, representing a substantial improvement in comparison with previously published gravity models.  相似文献   

4.
普里兹湾位于南极洲东部大陆边缘,其深部地壳结构特征对认识白垩纪冈瓦纳古陆裂解和新生代大陆边缘形成具有重要意义.本文利用重磁、多道反射地震、声纳浮标折射地震和ODP钻井数据对普里兹湾海域的深部地壳结构进行了研究.研究结果显示,普里兹凹陷表现为典型的盆地负重力异常特征,其沉积基底较深,而在四夫人浅滩为高幅重力正异常,其沉积基底普遍抬升.在大陆架中部存在SW-NE向条带状基底的抬升,且呈朝NE向逐渐变深的趋势.在中大陆架外侧,均衡残余重力异常呈V字形负异常条带状分布,其两翼分别与四夫人浅滩和弗拉姆浅滩外的大陆坡相连.该异常带在大陆架中部向陆的偏移可能是由于古大陆架边缘的地形影响,推测其与普里兹冲积扇同属于洋陆过渡带向陆的部分,在重力模拟剖面表现为地壳向海逐渐减薄.普里兹冲积扇的地壳厚度较薄,平均为6 km,最薄处可达4.6 km,并且根据洋陆过渡带向海端的位置,推测可能属于接近洋壳厚度的过渡壳.重力异常分区的走向与兰伯特地堑在普里兹湾的构造走向基本一致,可能主要反映了二叠纪-三叠纪超级地幔柱对普里兹湾的裂谷作用的影响.该区域的自由空间重力异常和均衡残余异常均表现为超过100×10-5m/s2的高幅正异常特征,可能由位于大陆架边缘的巨厚沉积体负载在高强度岩石圈之上的区域挠曲均衡作用所导致,可能与该区域第二期裂谷期之后的沉积间断以及快速进积加厚的演化过程有关.普里兹湾磁力异常的走向与重力异常明显不同,大致可分为东北高幅正异常区和西南低幅异常区.重磁异常在走向上的差异反映高磁异常主要来源于岩浆作用形成的铁镁质火成岩的影响,并且岩浆作用的时代不同于基底隆升的时代,而可能形成于前寒武纪或者南极洲和印度板块裂谷期间(白垩纪).  相似文献   

5.
Bata.  AT 《地球物理学报》1997,40(2):239-246
根据航磁、重力和地震数据以及地质和辅助地球物理资料,对约旦东北部前寒武纪岩石的轮廓和变化及其上覆的沉积岩石的厚度进行了研究.识别出5个具有特定磁性特征的磁场区,每个磁场区都有其特征的样式和突变的边界,每个磁场区的物质组成存在明显差异,其构造边界均与断层相对应.计算表明基底表面有很大起伏,磁化的前寒武纪岩石深度变化范围为-5000m至-10000m,可以识别出由基底下陷相对应的5个盆地或拗陷带,同时可见3个起伏较大的构造隆起.探测结果表明,古生代建造中发育的主要断裂呈N-S与NNE向,而在新生代建造中发育的断裂则呈NE-SW,NW-SE和E-W向.研究区构造发展的第一构造阶段与E-W向张力有关,第二构造阶段的产物明显受到第三构造阶段发生的构造变形的改造,并与阿拉伯板块的逆时针旋转有关.磁场区之间的移位、错断、拖曳和并置被认为剪切断层所造成.剪切形式表明位移是左行的,即北侧的块体向北西方向移动.  相似文献   

6.
The Tobago Basin, which is located offshore northern Venezuela with a southern margin close to Trinidad and Tobago, has an area of approximately 59,600 km2. The Tobago Basin has relatively favourable hydrocarbon prospects, and to date, exploration work has mainly concentrated on small areas of the southwestern portion of the basin. To conduct a comprehensive study of the structural framework of the basin and the characteristics of the basement in order to identify prospective zones for hydrocarbon exploration, shipborne‐measured and satellite‐measured gravity data, shipborne‐measured magnetic data, and aeromagnetic survey data were analysed. A regularisation filtering method was used to separate and obtain regional and residual gravity and magnetic anomalies. Directional gradients of gravity and magnetic anomalies and the total horizontal gradient and vertical second derivative of gravity anomalies were employed to extract information about fault structures. Regression analysis methods were used to determine the basement depth. The geological significance of the gravity and magnetic fields was examined, the structural framework of the basin was assessed, the basement depth was estimated, and favourable hydrocarbon exploration prospects within the basin were identified. The results show that the Tobago Basin contains complex structures consisting mainly of two groups of faults trending in northeasterly and northwesterly directions and that the major northeasterly trending faults control the main structural configuration and depositional system within the basin. The basement of the Tobago Basin has deep rises and falls. It can be divided into the following four secondary tectonic units: the western sub‐basin, the central uplift area, the southern sub‐basin, and the northeastern sub‐basin. The central uplift area and northeastern sub‐basin are most likely to have developed hydrocarbon accumulations and should be targeted for further exploration.  相似文献   

7.
Magnetic and gravity anomaly data, together with features of the basement topography presented here show that the continental margin of western Australia, including the Naturaliste plateau, was shaped by NE-SW-trending rift segments offset by nearly orthogonal transform faults. A steep landward gradient of the isostatic gravity field and a lineated magnetic anomaly which occur together at the continental slope are interpreted as marking the ocean-continent boundary of the rifted margin off Perth and the sheared margin between Perth and the Wallaby plateaus. Anomalies diagnostic of the ocean-continent boundary are not observed at the margins of the Naturaliste plateau; the geometry of the rift zone here is adduced from the disposition of magnetic lineations, fracture zones, and basement features. A geophysical survey of the Naturaliste fracture zone shows it to be a continuous basement trough extending from the Diamantina fracture zone 800 km northwest to Dirck Hartog ridge. Similar basement troughs west of and orthogonal to the fracture zone imply that the region west/southwest of the Naturaliste plateau was, like the region north of it, formerly occupied by Greater India. Marine magnetic anomaly and basement trends suggest that the oceanic crust between the plateau and Diamantina fracture zone could be substantially older than Paleocene, heretofore the oldest crust identified between Australia and Antarctica.  相似文献   

8.
The Cretaceous tectonic and geodynamic settings of the southeastern Russian continental margin are discussed using data generated during several recent geological studies. The structural patterns of the East Asian Cretaceous continental margin are the result of the influence of global and regional processes. The interaction and reorganization of the Eurasian, Pacific and other related plates induced intraplate tectonic processes such as rifting, subduction, collision, transform faulting, and basin formation. Three major basin types are recognized in this area: (i) mainly marine active continental margins associated with shear components (Sangjian–Middle Amur Basin); (ii) passive continental margins (Bureya, Partizansk, and Razdolny basins); (iii) intracontinental basins (Amur–Zeya Basin). The evolution of the biota in this region allows the examination of Early and Late Cretaceous biostratigraphy, faunal and floral changes, and the phytogeography of the southeastern Russian continental margin.  相似文献   

9.
Based on the drilling data,the geological characteristics of the coast in South China,and the interpretation of the long seismic profiles covering the Pearl River Mouth Basin and southeastern Hainan Basin,the basin basement in the northern South China Sea is divided into four structural layers,namely,Pre-Sinian crystalline basement,Sinian-lower Paleozoic,upper Paleozoic,and Mesozoic structural layers.This paper discusses the distribution range and law and reveals the tectonic attribute of each structural layer.The Pre-Sinian crystalline basement is distributed in the northern South China Sea,which is linked to the Pre-Sinian crystalline basement of the Cathaysian Block and together they constitute a larger-scale continental block—the Cathaysian-northern South China Sea continental block.The Sinian-lower Paleozoic structural layer is distributed in the northern South China Sea,which is the natural extension of the Caledonian fold belt in South China to the sea area.The sediments are derived from southern East China Sea-Taiwan,Zhongsha-Xisha islands and Yunkai ancient uplifts,and some small basement uplifts.The Caledonian fold belt in the northern South China Sea is linked with that in South China and they constitute the wider fold belt.The upper Paleozoic structural layer is unevenly distributed in the northern South China.In the basement of Beibu Gulf Basin and southwestern Taiwan Basin,the structural layer is composed of the stable epicontinental sea deposit.The distribution areas in the Pearl River Mouth Basin and the southeastern Hainan Basin belong to ancient uplifts in the late Paleozoic,lacking the upper Paleozoic structural layers.The stratigraphic distribution and sedimentary environment in Middle-Late Jurassic to Cretaceous are characteristic of differentiation in the east and the west.The marine,paralic deposit is well developed in the basin basement of southwestern Taiwan but the volcanic activity is not obvious.The marine and paralic facies deposit is distributed in the eastern Pearl River Mouth Basin basement and the volcanic activity is stronger.The continental facies volcano-sediment in the Early Cretaceous is distributed in the basement of the western Pearl River Mouth Basin and Southeastern Hainan Basin.The Upper Cretaceous red continental facies clastic rocks are distributed in the Beibu Gulf Basin and Yinggehai Basin.The NE direction granitic volcanic-intrusive complex,volcano-sedimentary basin,fold and fault in Mesozoic basement have the similar temporal and spatial distribution,geological feature,and tectonic attribute with the coastal land in South China,and they belong to the same magma-deposition-tectonic system,which demonstrates that the late Mesozoic structural layer was formed in the background of active continental margin.Based on the analysis of basement structure and the study on tectonic attribute,the paleogeographic map of the basin basement in different periods in the northern South China Sea is compiled.  相似文献   

10.
Present models of continental breakup envisage the formation of a rift valley which undergoes a protracted period of tectonism and eventual seafloor spreading in the axial part of the rift valley. This results in evidence of pre-breakup tectonism on most Atlantic-type margins in the form of normal blockfaults beneath the continental slope. The southeastern margin of the Australian continent has an unusually steep continental slope and shows little evidence of tectonism associated with the rift valley stage of development. The margin was formed by separation of the Lord Howe Rise and Australia during a phase of seafloor spreading in the Tasman Sea which lasted from about 80 to 60 m.y. B.P. Marine geophysical data over the central Lord Howe Rise indicate a contrast between the western and eastern part of of this structure. The western part shows faulted, rough basement topography, disturbed overlying sediments, and a relatively quiet magnetic field. The eastern part shows a smooth basement surface, undisturbed overlying sediments, and a high-amplitude, high-frequency magnetic field. It is suggested that the whole of the pre-breakup rift valley remained attached to the Lord Howe Rise. This explains the absence of rift valley structures within the eastern continental margin of Australia and implies non-axial breaching along the western boundary fault of a pre-Tasman Sea rift valley.  相似文献   

11.
Two reflection seismic transects, one across the central Appalachians in Virginia and the other across the southern Appalachians in Georgia, reveal a significant contrast in mid- and lower crustal reflectivity from east to west. Data from east of the Blue Ridge geologic province in Virginia and to the east of the Inner Piedmont in Georgia show a highly reflective crust extending from the near-surface to the Moho, including zones of east-dipping reflections, a sub-horizontal reflection signature at 7 seconds, and a west-dipping Moho. Reflection seismic data from west of the Blue Ridge in Virginia and Inner Piedmont farther south are characterized by reflector geometries related to deformation above a master decollement, leading to classic ‘thin-skinned’ tectonic structures in the overlying allochthon, and few if any apparent structures in the underlying basement. The location of the Iapetan rifted margin, the preexistence of favorably oriented structures to the east of this point, and sub-horizontal weak zones within the lower Paleozoic shelf strata have played critical roles in the distribution of seismic reflector geometry. Seismic reflection signatures seen in the southeastern United States are a result of multiple episodes of deformation from the early Paleozoic through the middle Mesozoic. Oblique stresses during late Paleozoic time produced transpression that manifested itself as predominantly strike-slip faulting to the east of the Blue Ridge/Inner Piedmont. Onlapping lower Paleozoic shelf strata responded to tectonic stresses through thin-skinned deformation above a master decollement during the late Paleozoic Alleghanian orogeny, aided in part by sub-horizontal zones of weakness in the strata. This partitioning of strain was supported via tectonic buttressing provided by Precambrian continental crust that was little deformed in the Taconic orogeny. During the Alleghanian orogeny, the variations in Valley and Ridge deformational style between the central and southern Appalachians were controlled by the original shape of the continental edge. Further deformation during Mesozoic extension occurred to the east of the Precambrian rift margin in the region where favorably oriented faults were reactivated, leading to the rotation of the fault zones from more steeply dipping initial orientations, the merging of the mid-crustal reflection zone with the Moho, and the formation of Mesozoic basins and antiformal reflections in the seismic sections.  相似文献   

12.
Examination of the shape of the midcontinent gravity high of central North America has led to the hypothesis that the Keweenawan rift system that caused it is the result of plate tectonic interaction. A numerical test has been carried out on the width and postulated transform fault offsets of the gravity high. The exactness of fit to a plate tectonic geometry implies that the continental lithosphere behaved as rigid plates during the Late Precambrian, about 1.1 by ago. This exactness of fit also suggests that the total amount of separation on the Keweenawan rifts is equal to the width of the gravity high. Gravity modelling studies bear out the plausibility of a major amount of rifting, up to 90 km under central Lake Superior. The midcontinent gravity high may represent an intermediate stage of continental rifting, since similar gravity highs and strong associated magnetic anomalies are found on the modern rifted margins of the Atlantic Ocean.  相似文献   

13.
青藏高原东北缘重力异常多尺度横向构造分析   总被引:8,自引:6,他引:2  
孟小红  石磊  郭良辉  佟拓  张盛 《地球物理学报》2012,55(12):3933-3941
本文研究了青藏高原东北缘地区布格重力异常特征,采用优化滤波法和归一化总水平梯度垂直导数法对研究区重力异常进行多尺度分离和横向构造分析.分离出的多尺度重力异常特征表明:1) 青藏高原东北缘地区大致以东经106°线为界,有一条醒目的重力异常梯级带,即贺兰山-六盘山-川滇南北构造带的北段,其东西两侧布格重力异常特征在形态和走向上截然不同,意味着两侧密度结构和构造特征存在明显差异. 2) 鄂尔多斯地块内部定边以北,重力异常高带走向由北东向转为近南北向,推测定边附近存在一个密度或构造界面,其两侧物质组成和构造特征具有差异,对比大尺度重力异常和中尺度重力异常,表明异常特征的这种差异主要是由上地幔深部结构引起的. 3) 青藏高原东北部各块体深部边界位置与地表构造分布不同,反映出该区构造复杂,深浅构造差异大. 4) 由于印度-欧亚板块碰撞及随后印度板块持续向北的挤压作用,造成青藏高原东北缘中、下地壳物质在巨大的北东向推挤力和鄂尔多斯刚性块体阻挡的共同作用下,沿着相对软弱的秦岭造山带方向蠕动.依据多尺度重力异常及其横向构造特征,综合推断出研究区内五条断裂带,即秦岭地轴北缘断裂带、海原-六盘山断裂带、香山-天景山断裂带、烟筒山断裂带和青铜峡-固原断裂带,并分析了它们在地壳深部的可能展布特征.  相似文献   

14.
裂陷盆地基底双界面模式二维重力反演   总被引:2,自引:1,他引:1       下载免费PDF全文
裂陷盆地基底的起伏表现为非光滑的几何形态,传统的重力反演结果并不能很好地反映这种特点.此外,大多数情况下,重力观测面并不位于盆地上界面,应为单独的起伏观测面,盆地应为上界面和基底组成的双界面模式.基于此,本文研究了起伏观测面上裂陷盆地基底双界面模式二维重力反演方法.研究中假设沉积盆地的沉积层与基底的密度差随深度按双曲线规律变化.将沉积盆地的沉积层剖分成相邻的垂直柱体,其水平尺寸是已知的,顶面与沉积层上界面重合,底面深度代表基底的深度,即为要反演的参数.反演中引入全变差函数作为盆地模型的约束,使得反演结果呈现非光滑形态,符合裂陷盆地基底特征.为减小反演多解性,引入已知深度点作为约束.建立由重力数据拟合、已知深度约束及全变差函数组成的目标函数,采用非线性共轭梯度算法使目标函数最小化.模型试算结果表明该方法可反演裂陷盆地基底起伏,并通过调整正则化参数的值可反演坳陷盆地基底起伏.将该反演方法用于珠江口盆地惠州凹陷和运城-临汾裂陷盆地实际资料处理,其结果较好地反映了裂陷盆地基底起伏特征,为研究盆地构造、油气勘探等提供重要参考.  相似文献   

15.
The West African Rift System has, for the last ten years, been thought to consist of five interconnected rifts extending from the Gulf of Guinea deep into the heart of Africa. Careful re-examination of the geophysical evidence makes it quite clear that there are only three interconnected rifts in West Africa; the Lower Benue Rift which extends to the northeast from the Gulf of Guinea to a triple junction near Chum, and the Gongola and Yola Rifts which extend to the north and east, respectively, from the Chum triple junction. These three rifts opened during the earlier part of the Mesozoic and were subsequently filled with Cretaceous sediments. The evidence for two further rifts, the Ati Rift and the Fort Archambault Rift which were thought to extend to the northeast and southeast, respectively, from a triple junction at the eastern end of the Yola Rift, does not stand up to re-examination.The “Ati Rift” was thought to follow a major linear positive gravity anomaly which had been mapped beneath the Quaternary sediments of the Chad Basin. The main gravity anomaly is separated from the Yola Rift by over 300 km and is probably due to a linear body of basic volcanic or volcano-clastic rocks associated with a suture of Pan-African age. Within the gap, between the main anomaly and the Yola Rift, there are three localised positive anomalies which relate to a gabbro of Precambrian age, a band of dense meta-sediments within the Basement Complex and an acid igneous complex of Palaeogene age. The anomaly as a whole is therefore a sequence of unrelated anomalies, none of which are due to features of Mesozoic age.The “Fort Archambault Rift” was thought to follow a major linear negative gravity anomaly which has been mapped beneath the Quaternary sediments of the Chad Basin. To a large extent the negative anomaly overlies the fosse de Baké-Birao (Baké-Birao Basin) which is itself part of a far larger structure that extends, parallel to the southern margin of the West African Rift System, from Douala on the Gulf of Guinea to Birao near the C.A.R. frontier with Sudan. The Douala-Birao Structure may possibly be loosely related to the West African Rift System in that it would appear to be a compressional structure formed at the same time as the Coniacian-Santonian phase of folding which is observed in the West African rifts. However, the two structures are clearly separated from each other and are quite different in character and to a lesser extent in age.  相似文献   

16.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

17.
The study of basement geochronology provides crucial insights into the tectonic evolution of oceans. However, early studies on the basement of the Xisha Uplift were constrained by limited geophysical and seismic data; Xiyong1 was the only commercial borehole drilled during the 1970 s because of the huge thickness of overlying Cenozoic strata on the continental margin. Utilizing two newly-acquired basement samples from borehole XK1, we present petrological analysis and zircon uranium(U)-lead(Pb) isotope dating data in this paper that enhance our understanding of the formation and tectonic features of the Xisha Uplift basement. Results indicate that this basement is composed of Late Jurassic amphibole plagiogneisses that have an average zircon 206 Pb/238 U age of 152.9±1.7 Ma. However, the youngest age of these rocks, 137±1 Ma, also suggests that metamorphism termination within the Xisha basement occurred by the Early Cretaceous. These metamorphic rocks have adamellites underneath them which were formed by magmatic intrusions during the late stage of the Early Cretaceous(107.8±3.6 Ma). Thus, in contrast to the Precambrian age(bulk rubidium(Rb)-strontium(Sr) analysis, 627 Ma) suggested by previous work on the nearby Xiyong1 borehole, zircons from XK1 are likely the product of Late Mesozoic igneous activity. Late Jurassic-Early Cretaceous regional metamorphism and granitic intrusions are not confined to Xisha; rocks have also been documented from areas including the Pearl River Mouth Basin and the Nansha Islands(Spratly Islands) and thus are likely closely related to large-scale and long-lasting subduction of the paleo-Pacific plate underneath the continental margins of East Asia, perhaps the result of closure of the Meso-Tethys in the South China Sea(SCS). Controversies remain as to whether, or not, the SCS region developed initially on a uniform Precambrian-aged metamorphic crystalline basement. It is clear, however, that by this time both Mesozoic compressive subduction and Cenozoic rifting and extension had significantly modified the original basement of the SCS region.  相似文献   

18.
The Tantalite Valley Shear Zone is a major Precambrian, southeast-trending tectonic lineament extending for some 500 km (possibly as much as 800 km) along strike in southern Namibia (South West Africa) and the northern Cape Province of South Africa. A minimum right-lateral displacement of 85 km has been estimated for this shear zone, which is one of a number with similar orientations found in southwestern Africa. The shear zones may represent slip-lines produced during continental collision about 1000–1300 m.y. B.P.The shear zones have acted as the locus for the intrusion of high-alumina tholeiitic magmas which have led to the development of a number of mafic to ultramafic complexes situated in or near the zones, and particularly the Tantalite Valley Shear Zone. Igneous activity and tectonism took place over an extended period of time and some bodies have been partly or completely metamorphosed to metagabbro or amphibolite.Three complexes have been studied in detail and they are geochemically distinct from each other, such that they cannot be related to one another by simple processes of fractionation although the rock types within any one complex may be so related. All show broad similarities in that they are depleted in lithophile elements (Ba, Rb, Sr, Nb, Zr) and enriched in nickel relative to similar basalts found elsewhere.  相似文献   

19.
An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.  相似文献   

20.
The first deep seismic reflection profiles offshore Brazil were acquired in Campos Basin and processed to 10 s TWT in 1984. Starting in 1989, Petrobrás acquired an extensive data set of deep seismic profiles using special acquisition equipment capable of effectively penetrating through the sedimentary layers and imaging the whole crustal architecture. These deep (18 s TWT) seismic reflection profiles extend across the Atlantic-type marginal basins, from the platform to the deepwater province, presently considered frontier regions for petroleum exploration. This work addresses the geological objectives of a deep seismic profile in the Sergipe Basin and discusses the results obtained by integrating regional seismic, gravity and magnetic data. When combined, these data provide evidence that deep seismic reflectors observed in the Sergipe Basin are related to intracrustal-upper mantle structures rather than sedimentary features. The deep seismic reflection profile in the Sergipe Basin also suggests that, rather than a non-volcanic passive margin, the deepwater extension of this basin is marked by several magmatic structures, including thick wedges of seaward-dipping reflectors and volcanic plugs. These magmatic features are associated with basinforming processes resulting from lithospheric extension during the breakup of Gondwana in the Early Cretaceous and subsequent emplacement of oceanic crust. These results are compared to the crustal scale structures observed in the Campos Basin, in the southeastern margin of Brazil. The interpretation of the deep structure of these basins indicates that final separation between the South American and African plates formed passive margins characterized by different patterns of crustal attenuation underlying the rift blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号