首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In metamorphic core complexes it is commonly unclear whether lower plate mylonites formed as the down-dip continuation of a detachment fault, or whether they represent a subhorizontal shear zone that was captured by a more steeply dipping detachment fault. Detailed microstructural, fabric, and strain data from mylonites in the Buckskin-Rawhide metamorphic core complex, west-central Arizona, constrain the structural development of the lower plate shear zone. Widespread exposures of ∼22–21 Ma granitoids of the Swansea Plutonic Suite enable us to separate Miocene strain coeval with core complex extension from older deformation. Mylonites across the lower plate consistently record top-to-the-NE-directed shear. Miocene quartz and feldspar deformation/recrystallization mechanisms indicate ∼450–500 °C mylonitization temperatures that were relatively uniform across a distance of ∼35 km in the extension direction. Quartz dynamically recrystallized grain sizes do not systematically vary in the extension direction. Strain recorded in the Swansea Plutonic Suite is also relatively uniform in the extension direction, which is incompatible with models in which lower plate mylonites form as the ductile root of a major detachment fault. Altogether these data suggest the mylonitic shear zone initiated with a ≤4° dip and was unroofed by a more steeply dipping detachment fault system. Lower plate mylonites in the Buckskin-Rawhide metamorphic core complex thus represent a captured subhorizontal shear zone rather than the down-dip continuation of a detachment fault.  相似文献   

2.
The Santa Lucia Shear Zone (SLSZ, Corsica) is a granulite-facies Permian shear zone that developed after the emplacement of a deep-seated gabbroic intrusion. New structural data shows that the SLSZ results from the juxtaposition of three spatially distinct mylonite belts, which are the product of the interaction between magmatism, metamorphism and shearing over a temperature range from ~800 to ~400°C. During the earlier high-grade deformation stage, which was accompanied by decompression from ~7 to ~5 kb at ~800°C, the SLSZ has accommodated high finite strain on a shear zone ≥1 km wide. Strain became increasingly localized as temperature decreased, but rather than reactivating pre-existing shear zones as commonly expected, younger mylonites expanded into previously unsheared rock, extending the total width of the shear zone. The zonation of different fabrics across the SLSZ suggests that pre-existing compositional and grain size heterogeneities in the starting material played a key role in governing superposed generations of shear zones.  相似文献   

3.
《Journal of Structural Geology》2001,23(6-7):1007-1013
The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ∼550 Ma record temperatures of ∼650–700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (∼450°C in the 40Ar–39Ar and Rb–Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ∼550 Ma for any extended period. Thus, the shear zones record temperatures that are ∼200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (∼100 MPa) and high strain rates (∼10−11 s−1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.  相似文献   

4.
Fabrics in the mid-crustal Bronson Hill zone of the southern New England Appalachian orogen record a range of apparent finite strains and conflicting kinematics, but structural relationships indicate coeval development. At the smallest scale of this study, shortening was accommodated in granitic orthogneiss, while transcurrent deformation was partitioned into relatively thin zones of metastratified rocks along the margins. The Monson orthogneiss can be broadly characterized by subvertical to steeply dipping S > L tectonites, subvertical to subhorizontal stretching lineations, closed to isoclinal folds, and dextral/reverse kinematics. The east-bounding Conant Brook shear zone and Greenwich syncline are characterized by steeply dipping mylonitic foliations, a range of lineations, and dextral/reverse kinematic indicators. The west-bounding Mt. Dumplin high strain zone is comprised of steeply dipping mylonites, subhorizontal lineations, and sinistral/normal kinematics. These structures reflect coeval partitioned dextral transpression, vertical extrusion, and north-directed lateral escape of the orthogneiss that was facilitated by bounding conjugate shear zones. Comparison of structural subdomains with transpressional modeling indicates vertical pseudo-monoclinic to inclined triclinic coaxial to simple shear influenced transpression. Compatibility between laterally adjacent subdomains was maintained by meso-/microscale partitioning. Absolute and relative timing constraints show that transpression was sustained from 330 Ma to 300 Ma.  相似文献   

5.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

6.
Kinematic models of various types of transpression have been used to explain fabric features and strain in many natural deformation studies. Here, a mathematical model that encompasses all monoclinic and triclinic transpressional deformations including triclinic deformation with inclined simple shear (ϕ) and/or inclined extrusion orientations (υ) can be tested using a step-by-step approach with available field evidence. Two cases are presented. The first case from the Wabigoon–Quetico boundary in the Archean Superior Province utilizes both fabric orientation and quantified strain data. The best fit of the field evidence to the model indicates that deformation likely took place along subvertical shear zones via transpression with subhorizontal simple shear (ϕ = 0–20°) and variable inclined extrusion direction (extrusion can be either east or west and υ typically indicates extrusion orientations between 0 and 50° from vertical). The second case of the South Iberian shear zone has fabric orientation data, but no quantifiable strain possibilities. The best fit of the field evidence to the model indicates that deformation likely took place along a moderately inclined shear zone via transpression with subhorizontal simple shear (ϕ = 0–20°) and variable inclined extrusion direction (υ values between 0° and 80° from the true dip of the shear zone). Using this protocol in other examples of natural deformation will allow further constraints to be applied to kinematic models.  相似文献   

7.
Field studies in the Palaeoproterozoïc Daléma basin, Kédougou-Kéniéba Inlier, reveal that the main tectonic feature comprises alternating large shear zones relatively well-separated by weakly deformed surrounding rock domains. Analysis of the various structures in relation to this major D2 phase of Eburnean deformation indicates partitioning of sinistral transpressive deformation between domains of dominant transcurrent and dominant compressive deformation. Foliation is mostly oblique to subvertical and trending 0–30° N, but locally is subhorizontal in some thrust-motion shear zones. Foliation planes of shear zones contain a superimposed subhorizontal stretching lineation which in places cross-cuts a steeply plunging stretching lineation which is clearly expressed in the metasedimentary rocks of weakly deformed surrounding domains. In the weakly deformed domains, the subhorizontal lineation is absent, whereas the oblique to subvertical lineation is more fully developed. Finite strain analyses of samples from surrounding both weakly deformed and shearing domains, using finite strain ratio and the Fry method, indicate flattened ellipsoid fabrics. However, the orientation of the long axis (X) of the finite strain ellipsoid is horizontal in the shear zones and oblique within the weakly deformed domains. Exceptionally, samples from some thrust zones indicate a finite strain ellipsoid in triaxial constriction fabrics with a subhorizontal long axis (X). In addition, the analysis of the strain orientation starting from semi-ductile and brittle structures indicates that a WNE–ESE (130° N to 110° N) orientation of strain shortening axis occurred during the Eburnean D2 deformation.  相似文献   

8.
The subvertical Kuckaus Mylonite Zone (KMZ) is a km-wide, crustal-scale, Proterozoic, dextral strike-slip shear zone in the Aus granulite terrain, SW Namibia. The KMZ was active under retrograde, amphibolite to greenschist facies conditions, and deformed felsic (and minor mafic) gneisses which had previously experienced granulite facies metamorphism during the Namaqua Orogeny. Lenses of pre- to syn-tectonic leucogranite bodies are also deformed in the shear zone. Pre-KMZ deformation (D1) is preserved as moderately dipping gneissic foliations and tightly folded migmatitic layering. Shear strain within the KMZ is heterogeneous, and the shear zone comprises anastomosing high strain ultramylonite zones wrapping around less deformed to nearly undeformed lozenges. Strain is localized along the edge of leucogranites and between gneissic lozenges preserving D1 migmatitic foliations. Strain localization appears controlled by pre-existing foliations, grain size, and compositional anisotropy between leucogranite and granulite. The local presence of retrograde minerals indicate that fluid infiltration occurred in places, but most ultramylonite in the KMZ is free of retrograde minerals. In particular, rock composition and D1 fabric heterogeneity are highlighted as major contributors to the strain distribution in time and space, with deformation localization along planes of rheological contrast and along pre-existing foliations. Therefore, the spatial distribution of strain in crustal-scale ductile shear zones may be highly dependent on lithology and the orientation of pre-existing fabric elements. In addition, foliation development and grain size reduction in high strain zones further localizes strain during progressive shear, maintaining the anastomosing shear zone network established by the pre-existing heterogeneity.  相似文献   

9.
《Journal of Structural Geology》2001,23(6-7):1031-1042
The Eastern Highlands shear zone in Cape Breton Island is a crustal scale thrust. It is characterized by an amphibolite-facies deformation zone ∼5 km wide formed deep in the crust that is overprinted by a greenschist-facies mylonite zone ∼1 km wide that formed at a more shallow level. Hornblende 40Ar/39Ar plateau ages on the hanging wall decrease towards the centre of the shear zone. In the older zone (over 7.8 km from the centre), the ages are between ∼565 and ∼545 Ma; in the younger zone (within 4.5 km of the centre), they are between ∼425 and ∼415 Ma; and in the transitional zone in between, they decrease abruptly from ∼545 to ∼425 Ma. Pressures of crystallization of plutons in the hanging wall, based on the Al-in-hornblende barometer and corresponding to depth of emplacement, increase towards the centre of the shear zone and indicate a differential uplift of up to ∼28 km associated with movement along the shear zone. The age pattern is interpreted to have resulted from the differential uplift. The pressure data show that rocks exposed in the younger zone were buried deep in the crust and did not cool through the hornblende Ar blocking temperature (∼500°C) until differential uplift occurred. The 40Ar/39Ar ages in the zone (∼425–415 Ma) thus date shear zone movement or the last stage of it. In contrast, rocks in the older zone were more shallowly buried before differential uplift and cooled through the blocking temperature soon after the emplacement of ∼565–555 Ma plutons in the area, long before shear zone movement. The transitional zone corresponds to the Ar partial retention zone before differential uplift. The 40Ar/39Ar age pattern thus reflects a Neoproterozoic to Silurian cooling profile that was exposed as a result of differential uplift related to movement along the shear zone. A similar K–Ar age pattern has been reported for the Alpine fault in New Zealand. It is suggested that such isotopic age patterns can be used to help constrain the ages, kinematics, displacements and depth of penetration of shear zones.  相似文献   

10.
In plate-boundary scale ductile shear zones defined by microstructural weakening, shear heating may lead to a temperature increase over 5 m.y. of up to 80 °C just below the brittle ductile transition, up to 120 °C just below the Moho, and to thermal boundary zones tens of km wide on either side of the shear zone. Where rock strength is highest, shear zones are narrow (∼1 km), and thermal gradients within the shear zone itself are low, so there is no tendency for increased localization. Heating results in thermal weakening, but this is partly offset by grain growth related to the decrease in stress. In shear zones of the order of 10 km width, shear stress, strain rate, and hence heat generation are lower, and thermal gradients are insufficient to cause additional strain localization. Temperature increases in the mid-crust are of the order of 10 °C, insufficient to cause partial melting or an increase in metamorphic grade. In the upper mantle, shear zones may be 50 km or more wide, and the temperature increase is less than 20 °C in 5 m.y., but temperature differences between center and margin may enhance the strain rate at the center by up to 18%.  相似文献   

11.
北大别穹隆是在早白垩世造山后伸展活动中形成的。其北界为北西西走向、倾向北北东、正左行平移的晓天-磨子潭韧性剪切带,南界为北西走向、倾向南东、右行“逆冲”的五河-水吼韧性剪切带。通过对这两条剪切带的构造观测、运动学分析、石英C轴组构测量、变形温度分析及变形模拟,表明剪切带原先为中地壳同一近水平的韧性拆离剪切带。该拆离剪切带在原始近水平状态时的活动为上盘向280°方位的伸展运动。随后在大规模岩浆活动与北大别穹隆的隆升中,这一剪切带被动地抬升与剥露,而出露于现今的穹隆边界上。变形模拟显示,北大别穹隆构造现今为近EW轴向的背形,其上隆幅度西强东弱。北大别穹隆的形成过程表明为典型的造山带变质核杂岩。  相似文献   

12.
The inherited localization model for shear zone development suggests that ductile deformation in the middle and lower continental crust is localized on mechanical anisotropies, like fractures, referred to as shear zone brittle precursors. In the Neves area (Western Tauern Window, Eastern Alps), although the structural control of these brittle precursors on ductile strain localization is well established, the relative timing of the brittle deformation and associated localized fluid flow with respect to ductile deformation remains in most cases a matter of debate. The present petrological study, carried out on a brittle precursor of a shear zone affecting the Neves metagranodiorite, aims to determine whether brittle and ductile deformations are concomitant and therefore relate to the same tectonic event. The brittle precursor consists of a 100–500 µm wide recrystallized zone with a host mineral‐controlled stable mineral assemblage composed of plagioclase–garnet–quartz–biotite–zoisite±white mica±pyrite. Plagioclase and garnet preserve an internal compositional zoning interpreted as the fingerprint of Alpine metamorphism and fluid–rock interactions concomitant with the brittle deformation. Phase equilibrium modelling of this garnet‐bearing brittle precursor shows that metamorphic garnet and plagioclase both nucleated at 0.6 ± 0.05 GPa, 500 ± 20°C and then grew along a prograde path to 0.75 ± 0.05 GPa, 530 ± 20°C. These amphibolite facies conditions are similar to those inferred from ductile shear zones from the same area, suggesting that both brittle and ductile deformation were active in the ductile realm above 500°C for a depth range between 17 and 21 km. We speculate that the Neves area fulfils most of the required conditions to have hosted slow earthquakes during Alpine continental collision, that is, coupled frictional and viscous deformation under high‐fluid pressure conditions ~450°C. Further investigation of this potential geological record is required to demonstrate that slow earthquakes may not be restricted to subduction zones but are also very likely to occur in modern continental collision settings.  相似文献   

13.
Quartz vein systems developed in and adjacent to shear zones host major gold deposits in the Kambalda region of the Norseman–Wiluna greenstone belt. At the Revenge Mine, two groups of mineralised reverse shear zones formed as conjugate, near-optimally oriented sets during ESE subhorizontal shortening adjacent to a major transpressional shear system. The shear zones developed at temperatures of about 400°C in a transitional brittle–ductile regime. Deformation was associated with high fluid fluxes and involved fault-valve behaviour at transiently near-lithostatic fluid pressures. During progressive evolution of the shear system, early brittle and ductile deformation was overprinted by predominantly brittle deformation. Brittle shear failure was associated with fault dilation and the formation of fault-fill veins, particularly at fault bends and jogs. A transition from predominantly brittle shear failure to combined shear along faults and extension failure adjacent to faults occurred late during shear zone evolution and is interpreted as a response to a progressive decrease in maximum shear stress and a decrease in effective stresses. The formation of subhorizontal stylolites, locally subvertical extension veins and minor normal faults in association with thrust faulting, indicates episodic or transient reorientation of the near-field maximum principal stress from a subhorizontal to a near-vertical attitude during some fault-valve cycles. Local stress re-orientation is interpreted as resulting from near-total shear stress release and overshoot during some rupture events. Previously described fault-valve systems have formed predominantly in severely misoriented faults. The shear systems at Revenge Mine indicate that fault-valve action, and associated fluctuations in shear stress and fluid pressure, can influence the mechanical behaviour of optimally-oriented faults.  相似文献   

14.
Mapping combined with structural analyses in the foreland edge of the metamorphic core of the Himalayas in SW Nepal highlights the existence of two north‐dipping shear zones with opposite sense of shear. Here, the metamorphic core is mainly affected by non‐coaxial top‐to‐the‐south sense of shear at temperatures between 450 °C and 550 °C that switch to a top‐to‐the‐north sense of shear at the top of the metamorphic core. We regionally correlate this upper shear zone with the South Tibetan detachment system. Ar‐dating on white mica indicates that both shear zones operated between 23 Ma and 17 Ma. Restoration of the folded South Tibetan detachment in far western Nepal yields a minimum dip‐slip distance of 190 km, compatible with predictions made by models of extrusion of a weak mid‐crustal channel. Our results support an orogenic model in which channel flow in the hinterland coexisted with thrust wedge mechanics in the foreland.  相似文献   

15.
西藏阿里札达韧性剪切带特征及其X光岩组分析   总被引:1,自引:0,他引:1  
文中简述了西藏阿里札达盆地的地质背景、区域地层和札达韧性剪切带的基本特征。采用X射线衍射法对札达韧性剪切带中的石英、方解石和白云母等三种矿物,进行了X光岩组分析,确定了韧性变形岩石的组构特征、韧性剪切带的属性和变形岩石的应变类型,以及韧性剪切带形成时的温压条件。研究表明,韧性变形岩石均具不对称组构,反映韧性带属于南盘(下盘)俯冲型韧性剪切带,韧性变形是在高温、高压、低应变速率条件下发生的,处于>10km的地壳深度,岩石应变类型以压扁应变为主。  相似文献   

16.
The Ribeira Belt (Brazil) is a Neoproterozoic collisional-related feature that was located in a south-central position in West Gondwana. We present quantitative data on finite strain, flow vorticity and deformation temperatures for the Curitiba Terrane, a major segment of the southern Ribeira Belt. Six deformation phases (D1-D6) related with crustal thickening and exhumation were recognized. D1 and D2-related microstructures are preserved exclusively within porphyroblasts, in part grown during stages of high-pressure (∼9–12 kbar) isobaric heating after crustal thickening. D3 phase was active from peak metamorphism attained in contrasting crustal levels (810–400 °C), to the early stage of exhumation (500–400 °C), as indicated by petrological, microstructural and quartz c-axis fabric evidence. Kinematic vorticity results indicate that the SL3 mylonitic fabric resulted from a simple shear-dominated deformation related with westward thrusting. North-verging overturned D4 folds with E-W-trending subhorizontal axes derived from a pure shear-dominated deformation. Regional D5 open folds with subvertical axes and NNE-SSW-trending traces were produced by indentation tectonics. D6 phase comprises retrograde orogen-parallel transcurrent shear zones related with scape tectonics. Geochronological data indicate that D3-D6 phases occurred between 584 and 580 Ma, suggesting a fast exhumation rate of ∼8 mm/year for the deepest rocks from the southern Ribeira Belt.  相似文献   

17.
《Precambrian Research》2005,136(2):139-157
Early structures in the central part of the Kaoko orogenic belt of NW Namibia suggest that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. In the Western zone, early structures were overprinted by a second phase of deformation, which is associated with localization of the transcurrent Puros shear zone along the contact between the Western and Central zones. During this second phase, extensive partial melting and intrusion of ∼550 Ma granitic bodies occurred in the high-grade Western zone. In the Central zone, the second phase of deformation led to complete overprinting of the early foliation in the zone adjacent to the Puros shear zone, and to the development of kilometre-scale folds in the more distal parts. Strain partitioning into transcurrent deformation along the Puros shear zone and NE–SW oriented shortening in the Central zone is consistent with a sinistral transpressional regime during the second phase of deformation. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature Village Mylonite Zone that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone controlling the tectonic evolution of the Pan-African Kaoko belt.  相似文献   

18.
Mubarak shear belt provides an opportunity to investigate quantitative finite strain (Rs), proportions of pure shear and simple shear components, sense of shear indicators, subhorizontal to steeply plunging mineral lineations, in a dextral transpressional zone. The structural style of the Mubarak shear belt is consistent with dextral transpression within the Central Eastern Desert where dextral and reverse shear have developed simultaneously with the regional foliation. The high strain zone of the Mubarak shear belt is characterized by steeply dipping foliation with sub-horizontal stretching lineation (simple shear) surrounded by thrust imbrications with slightly plunging stretching lineations. Strain estimates from the Mubarak shear belt are used to determine how pure and simple shear components of deformation are partitioned. The axial ratios in XZ sections range from 1.16 to 2.33 with the maximum stretch, S X , ranges from 1.06 to 1.48. The minimum stretch, S Z , ranges from 0.65 to 0.92 indicating a moderate variation in vertical shortening. Volcaniclastic metasediments and metagabbros were subjected to prograde low-grade regional metamorphism in the range of greenschist to lower amphibolite facies (450–650°C at 2–4 kbar). Medium pressure (6–8 kbar at 530°C) was estimated from the high strain zone within the dextral strike-slip shear zones. Retrograde metamorphism occurred at a temperature range of 250–280°C. There is a trend towards decreasing the ratio of 100Mg/(Mg + Fetot + Mn) away from the high strain zone of the Mubarak shear belt. Integrated strain and temperature estimates indicate that the simple shear (non-coaxial) components of deformation played a significant role in formation and exhumation of the Mubarak shear belt during the accumulation of finite strain and consequently during progressive transpression and thrusting.  相似文献   

19.
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.  相似文献   

20.
The NW–SE Irtysh Shear Zone is a major tectonic boundary in the Central Asian Orogenic Belt (CAOB), which supposedly records the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan/south Mongolia orogenic system. However, the tectonic evolution of the Irtysh Shear Zone is not fully understood. Here we present new structural and geochronological data, which together with other constraints on the timing of deformation suggests that the Irtysh Shear Zone was subjected to three phases of deformation in the late Paleozoic. D1 is locally recognized as folded foliations in low strain areas and as an internal fabric within garnet porphyroblasts. D2 is represented by a shallowly dipping fabric and related ∼ NW–SE stretching lineations oriented sub-parallel to the strike of the orogen. D2 foliations are folded by ∼ NW–SE folds (F3) that are bounded by a series of mylonite zones with evidence for sinistral/reverse kinematics. These fold and shear structures are kinematically compatible, and thus interpreted to result from a transpressional deformation phase (D3). Two samples of mica schists yielded youngest detrital zircon peaks at ∼322 Ma, placing a maximum constraint on the timing of D1–D3 deformation. A ∼ NE–SW granitic dyke swarm (∼252 Ma) crosscuts D3 fold structures and mylonitic fabrics in the central part of the shear zone, but is displaced by a mylonite zone that represents the southern boundary of the Irtysh Shear Zone. This observation indicates that the major phase of D3 transpressional deformation took place prior to ∼252 Ma, although later phases of reactivation in the Mesozoic and Cenozoic are likely. The late Paleozoic deformation (D1–D3 at ∼322–252 Ma) overlaps in time with the collision between the Chinese Altai and the intra-oceanic arc system of the East Junggar. We therefore interpret that three episodes of late Paleozoic deformation represent orogenic thickening (D1), collapse (D2), and transpressional deformation (D3) during the convergence between the Chinese Altai and the East Junggar. On a larger scale, late Paleozoic sinistral shearing (D3), together with dextral shearing farther south, accommodated the eastward migration of internal segments of the western CAOB, possibly associated with the amalgamation of multiple arc systems and continental blocks during the late Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号