首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This paper intended to evaluate the behavior of saturated sand and sloped ground subjected to flow failure with seepage of pore water in the ground after earthquake and the resultant liquefaction. Triaxial compression tests of sand with constant deviator stress but changing of pore pressure and volume of the specimens were conducted in this study. It was revealed that the relation between the volume change and the amount of shear strain during deformation depended on the initial density of the sand but it did not much depend on shear stress and initial confining stress levels. Based on this test results and numerical analysis of the seepage of pore water in liquefied ground, a methodology was proposed to predict the deformation of inclined ground due to liquefaction.  相似文献   

2.
利用新研制的土工静力-动力液压三轴-扭转多功能剪切仪,在5种初始主应力方向角与5种中主应力系数相组合的初始固结条件下,对饱和松砂进行了不排水循环扭剪试验。讨论了初始固结条件对不排水条件下饱和松砂孔隙水压力变化规律及对剪胀、剪缩、卸荷体缩等体积变化过程的影响。试验研究表明:(1)分别以稳定残余孔隙水压力和破坏时循环次数归一化后的残余孔隙水压力比和循环次数比之间的关系可以用双曲线模式表达。其参数主要依赖于初始主应力方向,中主应力系数对参数的影响并不显著。归一化后的孔隙水压力比与广义剪应变之间的关系也可以用双曲线模式表达,其中的2个待定参数依赖于初始主应力方向,与中主应力系数无关;(2)在三向非均等固结条件下的不排水循环扭剪试验中,饱和松砂表现出卸荷体缩特性,不同初始主应力方向时,饱和松砂剪缩、剪胀、卸荷体缩呈现出不同的交替变化模式。  相似文献   

3.
循环荷载作用下饱和砂土的孔压增长规律是土动力学的核心内容之一。基于笔者在给定相对密度、均等固结条件下饱和南京细砂的不排水等幅循环三轴试验结果建立的孔压增量模型,进一步进行了不同相对密度、不同固结比条件下饱和南京细砂的不排水等幅循环三轴试验,将上述均等固结的孔压增量模型拓展为适用于不同相对密度、均等和非均等固结条件的孔压增量模型。采用拓展后的孔压增量模型对试验结果进行分析的结果表明:通过该孔压增量模型预测验证试验的孔压与验证试验测试的孔压具有较好的一致性,说明该孔压增量模型具有普适性。  相似文献   

4.
前人曾指出液化后伴随着超孔隙水压重新分配的渗透会引起流体破坏的可能性。为了研究这一现象,利用实验室三轴试验将孔隙水注入土壤检测了土壤的渗透剪切破坏。该实验是在各项异性的固结作用后保持差应力,使用孔隙水控制装置在体积不变的应变控制条件下将孔隙水注入。实验中所用的材料是在1995年神户地震时被液化的常规洁净细砂和风化的花岗岩土壤。本文以实验结果为基础,讨论了由孔隙水注入引起的渗透剪切破坏判据和导致后液化行为的剪切应变发展特征。  相似文献   

5.
In the first part of this study, a series of stress-controlled hollow cylinder cyclic torsional triaxial shear tests were conducted on loose to medium dense saturated samples of clean Toyoura sand to investigate its liquefaction behavior. A uniform cyclic sinusoidal loading at a 0.1 Hz frequency was applied to air-pluviated samples where confining pressure and relative density was varied. Cyclic shear stress–strain changes, the number of cycles to reach liquefaction and pore pressure variations were recorded. Results indicate that the liquefaction resistances of uniform sands are significantly affected by the method of sample preparation and initial conditions.  相似文献   

6.
Laboratory tests on the large post-liquefaction deformation of saturated Nanjing fine sand were performed by using a hollow cylinder apparatus. The stress-strain responses and the characteristics of excess pore water pressure after liquefaction were studied. It was found that the relationship between deviatoric stress and axial strain presented a sigmoid curve, and there was a good linearity relationship between normalized pore water pressure and deviatoric stress. On this basis, a constitutive model of stress-strain responses and a dissipation model of excess pore water pressure were established. It was found that the results predicted by the two models were in good agreement with the experimental data. The influence of relative densities and confi ning pressure on the characteristics of liquef ied soil were studied. The results showed the relative densities and initial effective confining pressure all had an important influence on the stress-strain responses of liquefi ed saturated Nanjing fine sand. However, the dissipation model of excess pore water pressure after liquefaction was only affected by the confining pressure.  相似文献   

7.
黄河三角洲粉土液化的试验研究   总被引:2,自引:0,他引:2  
在野外自然地理和地质调查的基础上,以黄河地区可液化场地粉土为研究对象,利用室内动三轴和振动柱试验进行测定,分析了动荷载作用下粉土的动应力应变关系并模拟了地震荷载作用下粉土的孔压响应及抗液化强度,得出了液化破坏标准,提出了原状粉土的振动孔压上升模型。对试验结果进行分析发现,随着粘粒含量的增加,粉砂、粉土、粉质粘土、粘土达到相同剪应变所需的动剪应力也依次增加;粉土孔压比0.68、粉砂土孔压比0.87作为液化破坏开始的标志;粉土发生液化所需的循环应力比大于砂土。这些研究为以后建立适合本地区的饱和地基土地震破坏判别方法提供了参数和依据。  相似文献   

8.
主应力轴持续旋转条件下饱和松砂的振动孔隙水压力特性   总被引:2,自引:0,他引:2  
利用新研制的“土工静力-动力液压三轴-扭剪多功能剪切仪”,针对福建标准松砂,在三向非均等固结条件下,进行了能够模拟海洋波浪荷载作用下主应力轴连续旋转的循环耦合剪切试验。通过试验着重探讨了初始主应力方向、振动过程中主应力方向连续变化对不排水条件下砂土的振动孔隙水压力增长特性的影响。实验研究表明:在振动过程中主应力轴连续旋转的条件下,初始主应力方向对砂土的动孔压比与振次比之间关系具有显著的影响,随着初始大主应力与竖向之间夹角的增大,动孔压比的增长速度明显加快,具有较好的规律性;归一化孔压比与广义剪应变之间的关系基本上与初始主应力方向角和振动剪应力幅值无关。  相似文献   

9.
The mechanical response to cyclic loading of saturated cohesionless soils is usually investigated by means of effective stress method considering pore water pressure changes that lead to reduced strength and stiffness. On the other hand, the behavior of partially saturated sands is different from the behavior of saturated sand deposits. The development of negative pore water pressures in particular makes it difficult to estimate the behavior of partially saturated sands. The response of partially saturated sands, however, can be examined in a physically understandable manner by investigating their energy characteristics independently of pore pressure behavior. To establish a general framework for understanding the behavior of partially saturated sand, a total of 52 resonant column and dynamic torsional shear tests were conducted under undrained conditions. The effects of factors such as the amplitude of shear strain, relative density, saturation ratio and confining pressure on the dynamic characteristics of the sand and on energy dissipation were studied. The use of the energy concept in the evaluation of partially saturated soils is shown to be a promising method for the evaluation of the cyclic behavior of partially saturated sands.  相似文献   

10.
Two in-flight shear wave velocity measurement systems were developed to perform the subsurface exploration of shear wave velocity in a centrifuge model. The bender elements test and the pre-shaking test used in the study provided reliable and consistent shear wave velocity profiles along the model depth before and after shaking in the centrifuge shaking table tests. In addition, the use of the bender elements measurement system particularly developed here allowed continuous examination of the evolution of shear wave velocity not only during and after the shaking periods in the small shaking events but also during the dissipation period of excess pore water pressure after liquefaction in the large shaking events. The test results showed that the shear wave velocity at different values of excess pore water pressure ratio varied as the effective mean stress to the power of 0.27, to a first approximation. Consequently, a relationship between the shear wave velocity evolution ratio and the excess pore water pressure ratio is proposed to evaluate the changes in shear wave velocity due to excess pore water generation and dissipation during shaking events. This relation will assist engineers in determining the shear stiffness reduction ratio at various ru levels when a sand deposit is subjected to different levels of earthquake shaking.  相似文献   

11.
Pore water pressure generation during earthquake shaking initiates liquefaction and affects the shear strength, shear stiffness, deformation, and settlement characteristics of soil deposits. The effect of plastic fines (kaolinite) on pore pressure generation in saturated sands was studied through strain-controlled cyclic triaxial tests. In addition to pore pressure generation, this experimental study also focused on evaluating the threshold shear strain for pore pressure generation and the volumetric compressibility of specimens during pore pressure dissipation. The results reveal that specimens having up to 20% plastic fines content generated larger values of pore water pressure than clean sand specimens. At 30% fines content, the excess pore water pressure decreased below that of clean sand. The threshold shear strain, which indicates the strain level above which pore pressures begin to generate, was assessed for different kaolinite–sand mixtures. The threshold shear strain was similar for 0–20% fines (γt0.006–0.008%), but increased to about 0.025% for 30% fines. The volumetric compressibility, measured after pore pressure generation, was similar for all specimens. The transition of behavior at fines contents between 20% and 30% can be attributed to a change in the soil structure from one dominated by sand grains to one dominated by fines.  相似文献   

12.
Liquefaction of saturated loose sand is a major cause of extensive damage to buildings and infrastructures during large earthquakes. A better understanding of the behaviour of liquefied soil is becoming increasingly necessary to mitigate earthquake damage, and the fluid method has become an increasingly popular means to study the behaviour of liquefied soils. The purpose of this study is to determine the fluid characteristics of liquefied fine sand. In this paper, the apparent viscosity was measured as an index of fluid characteristics using the shaking table tests of pre-liquefaction behaviour of saturated fine sand at approximately 45 % relative density; the relationship of apparent viscosity and shear strain rate on liquefying fine sand was indicated as a power-law shear-thinning non-Newtonian fluid; and liquefying fine sand has the alternating behaviour of shear dilatancy and compressibility during cyclic loading. Additionally, a series of a monotonic axial compression loading tests in an undrained manner were performed to measure the shear stress and excess pore pressure ratio relationship on the post-liquefaction saturated fine sand at approximately 50 % relative density. The fluid characteristics of post-liquefaction fine sand exhibits rate dependence and can be described by a combined fluid model of time-independent and time-dependent power-law functions; the time-independent viscous resistance is not relevant to the excess pore pressure ratio; but the time-dependent frictional resistance is closely related to the excess pore pressure ratio. Furthermore, the results of the verification tests demonstrate that the proposed fluid model has good applicability for the fluid behaviour of the post-liquefaction fine sand.  相似文献   

13.
The paper provides insight into factors affecting the prediction of seismic pore-water pressure build up in clean sands and sand–silt mixtures for modeling purposes. Laboratory pore pressure measurements were conducted using stress-controlled undrained cyclic simple shear (CSS) tests carried out on both reconstituted and undisturbed specimens of silty sands under different initial conditions (density state, effective vertical stress, initial fabric and fines content). Test results were interpreted by using a damage concept-based model which is actually implemented for clean sands in non-linear time domain site response analysis codes. In the present work, such a model was properly modified for sands having fines contents higher than 35%. The general applicability of the modified procedure for predicting pore water pressure response of silty sands under irregular shear stress loading using data from stress-controlled CSS tests was also verified and all factors affecting calibration parameters of the model were throughly analyzed.  相似文献   

14.
粉煤灰改良饱和黄土的抗液化特性   总被引:4,自引:0,他引:4       下载免费PDF全文
为了经济、环保地达到改良处理减轻饱和黄土地基液化震害的目的,通过配备不同粉煤灰掺量的改良黄土进行动三轴试验,研究饱和粉煤灰改良黄土的动应力、动应变和动孔隙水压力变化特征,分析粉煤灰掺量对饱和改良黄土液化应力比、动残余变形和动孔隙水压力的影响规律,并结合微结构试验结果,探讨饱和粉煤灰改良黄土抗液化的物理化学机制。结果表明:粉煤灰掺量对饱和改良黄土的液化应力比、动应变和动孔隙水压力比均具有较为显著的影响。随着粉煤灰掺量的增加,饱和改良黄土的液化应力比持续增加,且当掺量达到15%后,继续增加粉煤灰掺量时改良黄土的液化应力比增加显著。饱和改良黄土的动应变和动孔隙水压力比均随着粉煤灰掺量的增加而减小;掺量达到25%后,饱和改良黄土不液化。饱和粉煤灰改良黄土的SEM细观结构试验照片中呈现大量的圆球状、粒状粉煤灰颗粒和絮凝状胶结物,表明其抗液化的物理化学机制主要包括粉煤灰的水化作用、胶体生成物和颗粒的填隙作用和粉煤灰对游离水的吸附作用。  相似文献   

15.
为探究砂土液化的微观机理,根据室内试验中微生物反硝化反应气泡的生成速率,建立数值模拟的时效性关系,分别制取微生物处理0天、2天、3天和5天的高饱和砂土试样,采用CFD-DEM耦合方法模拟不同工况下砂土试样的循环三轴不排水剪切试验。依据砂土试样的力链分布、抗液化振次、孔压比、轴向应变和力学配位数在加载过程中的变化情况,从宏微观角度分析砂土试样的抗液化能力。模拟结果表明:含微生物气泡高饱和砂土的抗液化强度较饱和砂土有所提升;随着微生物处理时间的增加,砂土试样的饱和度降低,孔压比和轴向应变的累积变慢,抗液化能力增强。  相似文献   

16.
In the present study, an artificial neural network (ANN) model was developed to establish a correlation between soils initial parameters and the strain energy required to trigger liquefaction in sands and silty sands. A relatively large set of data including 284 previously published cyclic triaxial, torsional shear and simple shear test results were employed to develop the model. A subsequent parametric study was carried out and the trends of the results have been confirmed via some previous laboratory studies. In addition, the data recorded during some real earthquakes at Wildlife, Lotung and Port Island Kobe sites plus some available centrifuge tests data have been utilized in order to validate the proposed ANN-based liquefaction energy model. The results clearly demonstrate the capability of the proposed model and the strain energy concept to assess liquefaction resistance (capacity energy) of soils.  相似文献   

17.
This paper presents the results of shaking table model tests which were carried out to investigate the pore water pressure generation and related liquefaction mechanism in layered sand deposits. The experiments were performed on uniform sand columns, silt interlayered sand columns and two layered sand columns deposited at various relative densities and subjected to different input excitations. During the experiments excess pore water pressures were measured by pore pressure transducers installed at three different depths and, surface settlements and thickness of water film developed under less permeable inclusions were measured by a digital camera. The experimental results are discussed and compared to demonstrate the effects of relative density, input acceleration and presence of a silt seam on the generation of excess pore water pressure in sand deposits subjected to dynamic loading. The results showed that the presence of a less permeable silt interlayer within the sand deposit and existence of a loose sand layer underlying dense sand deposits can have significant effect on the pore water pressure generation mechanism.  相似文献   

18.
将废弃橡胶轮胎内填充散体材料形成加筋土结构,已被应用于地基、挡土墙和边坡加固等工程,表现出较好的减震隔振效果,而轮胎加筋土的抗液化性能尚缺乏研究。开展3组小型振动台试验,通过改变轮胎垫层的排水条件,验证轮胎加筋砂垫层的抗液化效果。结果表明:轮胎加筋砂垫层具有良好的抗液化效果,与刚性垫层相比,超静孔压比峰值差值范围在0.01~0.19,残余超静孔压比差值范围在0.08~0.16,轮胎加筋砂垫层提供的排水通道具有抑制超静孔隙水压力发展和加速超静孔隙水消散的作用,孔隙水会沿着轮胎与下部土体的界面以及胎间的排水通道排出;采用量测侧向动土压力的方法,定义土体液化程度量化指标,进一步验证轮胎加筋砂垫层抗液化效果;振动过程中轮胎加筋垫层表面沉降范围为11.3~15.7 mm,表现出较好的变形协调性能。  相似文献   

19.
以片状颗粒成分为主的片状结构砂与常用的圆形颗粒标准石英砂相比,在物理力学特性上有显著的差异。循环荷载作用下,饱和砂土振动孔压上升会导致土体刚度发生软化,当振动孔压累积达到一定水平时,会产生液化现象,从而引起土体结构发生破坏。采用英国WFI动三轴仪,研究了南京片状细砂在循环荷载作用下,静偏应力水平、循环应力比水平和循环次数对其动应力一应变关系的影响,考虑每一次循环过程中动应力—应变关系滞回曲线的卸载及再加载割线动剪切模量Gsec和最大割线模量Gmax的变化特性,建立了动剪模量软化的经验公式;静偏应力水平对动剪模量软化有显著影响,随着循环次数的增加,动应力—应变滞回圈逐渐向应变累积方向滑移和向应变轴方向倾斜,且彼此分离;考虑循环软化特性,采用修正的Masing准则,描述了循环荷载下南京片状细砂的动应力—应变关系。  相似文献   

20.
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-1, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号