首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We conducted a comprehensive 40Ar/39Ar geochronological study of the Jiali and Gaoligong shear zones to obtain a better understanding of crustal deformation and tectonic evolution around the Eastern Himalayan Syntaxis (EHS). The new age data reveal that the main phase of deformation in the Jiali and Gaoligong shear zones occurred from 22 to 11 Ma and from 18 to 13 Ma, respectively. Structural data collected during this study indicate that the Jiali shear zone underwent a change in shear sense from sinistral to dextral during its movement history. Based on a comparison with the deformation histories of other major shear zones in the region, we argue that the initial sinistral motion recorded by the Jiali shear zone was coincident with that of the Ailao Shan–Red River shear zone, which marked the northern boundary of the southeastward extrusion of the Indochina block during the Early Miocene. From the Middle Miocene (~18 Ma), the Jiali shear zone changed to dextral displacement, becoming linked with the dextral Gaoligong shear zone that developed as a consequence of continued northward indentation of the Indian continent into Asia. Since this time, the Jiali and Gaoligong shear zones have been united, defining the southwestern boundary of the EHS during clockwise rotation of the eastward-extruding Tibetan block, as revealed by recent GPS data. The temporal change in regional deformation pattern from southeastward block extrusion to clockwise rotation of crustal fragments may have played an important role in the development of the eastern Himalayan drainage system around the EHS.  相似文献   

2.
《China Geology》2021,4(1):77-94
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau. This region was considered to be in the southeastward extension of the Lhasa Block, bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south. The Demala Group complex, a set of high-grade metamorphic gneisses widely distributed in the Chayu area, is known as the Precambrian metamorphic basement of the Lhasa Block in the area. According to field-based investigations and microstructure analysis, the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses, biotite quartzofeldspathic gneiss, granitic gneiss, amphibolite, mica schist, and quartz schist, with many leucogranite veins. The zircon U-Pb ages of two granitic gneiss samples are 205 ± 1 Ma and 218 ± 1 Ma, respectively, representing the ages of their protoliths. The zircons from two biotite plagiogneisses samples show core-rim structures. The U-Pb ages of the cores are mainly 644 –446 Ma, 1213 –865 Ma, and 1780 –1400 Ma, reflecting the age characteristics of clastic zircons during sedimentation of the original rocks. The U-Pb ages of the rims are from 203 ± 2 Ma to 190 ± 1 Ma, which represent the age of metamorphism. The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma, interpreted as the age of the anatexis in the Demala Group complex. Biotite and muscovite separates were selected from the granitic gneiss, banded gneiss, and leucogranite veins for 40Ar/39Ar dating. The plateau ages of three muscovite samples are 16.56 ± 0.21 Ma, 16.90 ± 0.21 Ma, and 23.40 ± 0.31 Ma, and the plateau ages of four biotite samples are 16.70 ± 0.24 Ma, 16.14 ± 0.19 Ma, 15.88 ± 0.20 Ma, and 14.39 ± 0.20 Ma. The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex. Combined with the previous research results of the Demala Group complex, the authors refer that the Demala Group complex should be a set of metamorphic complex. The complex includes not only Precambrian basement metamorphic rock series, but also Paleozoic sedimentary rock and Mesozoic granitic rock. Based on the deformation characteristics, the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic, namely Late Triassic-Early Jurassic (203 –190 Ma) and Oligocene –Miocene (24 –14 Ma). The early stage of metamorphism (ranging from 203 –190 Ma) was related to the Late Triassic tectono-magmatism in the area. The anatexis and uplifting-exhumation of the later stage (24 –14 Ma) were related to the shearing of the Jiali strike-slip fault zone. The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.©2021 China Geology Editorial Office.  相似文献   

3.
The general classification of intermediate-acid intrusive rocks in the metamorphic zone of Gaoligong Mountains as one of the metamorphic terranes of Proterozoic Gaoligong Mountains is problematic regarding the intrusion stage and age, as well as the subsequent metamorphism and deformation. In this study, we investigated granitic gneiss in the metamorphic zone of Gaoligong Mountains based on the 1:50,000 regional geological survey of Qushi Street (2011-2013) and SHRIMP U-Pb zircon geochronology. Results showed that the SHRIMP U-Pb zircon dating of granitic gneiss ranged from 163.5±5.7 Ma to 74.0±2.0 Ma. Thus, the granitic gneiss was grouped into orthometamorphic rocks (metamorphic intrusions). The dating data of granite rocks associated with intense metamorphism and deformation were divided into three groups, 163.5±5.7 to 162.3±3.1 Ma, 132.2-101.0 Ma and 99.4±3.5-74.0±2.0 Ma, which respectively represented three independent geologic events including an important magma intrusion with superimposed metamorphic effects in the late Middle Jurassic, regional dynamic metamorphism and superimposed reformation of fluid action in the early Cretaceous, and dynamic metamorphism dominated by ductile shear and metamorphism starting from the late Cretaceous.  相似文献   

4.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

5.
西昆仑库地韧性剪切带的40Ar/39Ar年龄   总被引:16,自引:4,他引:12       下载免费PDF全文
西昆仑库地以南有一套变质变形较强的岩系,前人依照区域对比关系将其划为前寒武的古老基底。对西昆仑早期构造演化的论述均基于该观点,但没有提供确凿的同位素年代学证据。笔者通过野外观察、室内研究,确认库地以南的变质变形岩系是大型韧性推覆剪切作用的产物。通过对新生变质矿物角闪石和黑云母单矿物的40Ar/39Ar年龄分析,确定剪切变质年龄为426-451Ma,说明库地的变质变形岩系是形成于早古生代晚期的一条大型韧性剪切带,这对于解释西昆仑的早期构造演化具有重要意义。  相似文献   

6.
The Río San Juan metamorphic complex exposes a segment of a high-pressure subduction-accretionary complex built during Caribbean island arc-North America continental margin convergence. It is composed of accreted arc- and oceanic-derived metaigneous rocks, serpentinized peridotites and minor metasediments forming a structural pile. Combined detailed mapping, structural and metamorphic analysis, and geochronology show that the deformation can be divided into five main events (D1–D5). An early subduction-related D1 deformation and M1 metamorphism produced greenschist (mafic rocks of the Gaspar Hernández peridotite-tectonite), blueschist and eclogite (metamafic blocks in the Jagua Clara mélange), high-P epidote-amphibolite and eclogite (Cuaba unit), and lower blueschist and greenschist-facies conditions (Morrito unit). This was followed by M2 decompression and cooling in the blueschist, greenschist and low-P amphibolite-facies conditions. The shape of the retrograde P-T path, the age of the exhumation-related D2 structures, and the tectonic significance of D2 deformation are different in each structural unit. Published U–Pb and 40Ar/39Ar plateau ages and T-t/P-t estimations reveal diachronic Turonian-Coniacian to Maastrichtian retrograde M2 metamorphism in the different structural units of the complex, during a consistent D2 top-to-the-NE/ENE tectonic transport. Regionally, a similar top-to-the-ENE tectonic transport also took place in the metasedimentary nappes of the Samaná complex during the Eocene to earliest Miocene. This kinematic compatibility indicates a general northeastward progradation of deformation in the northern Caribbean convergent margin, as the successive tectonic incorporation of arc, oceanic and continental-derived terrains to the developing Caribbean subduction-accretionary complex took place. D3–D5 deformations are discontinuous and much less penetrative, recording the evolution from ductile to brittle conditions of deformation in the complex. The D3 event substantially modified the nappe-stack and produced open folds with amplitudes up to kilometer-scale. The Late Paleocene-Eocene D4 structures are ductile to ductile–brittle thrusts and inverse shear bands. D5 is a Tertiary, entirely brittle deformation that had considerable influence in the geometry of the whole complex. From the Miocene to the Present, it has been cut and laterally displaced by a D5 sinistral strike-slip fault system associated with the Septentrional fault zone.  相似文献   

7.
Summary The Lanterman Fault Zone, a major terrane boundary in northern Victoria Land, displays a polyphase structural evolution. After west-over-east thrusting, it experienced sinistral strike-slip shearing. Sheared metabasites from the Wilson Terrane (inboard terrane) preserve a record of retrograde metamorphic evolution. Shearing took place under amphibolite-facies metamorphic conditions (roughly comparable to those reached during regional metamorphism) which later evolved to greenschist-facies conditions. In contrast, the Bowers Terrane (outboard terrane) preserves a prograde metamorphic evolution which developed from greenschist-facies to amphibolite-facies metamorphism during shearing, followed by greenschist-facies metamorphism during the late deformational stages. Laser step-heating 40Ar–39Ar analyses of syn-shear amphibolite-facies amphiboles yielded ages of 480–460 Ma, in agreement with a ∼480-Ma age obtained from a biotite aligned along the mylonitic foliation. These ages are younger than those (∼492 to ∼495 Ma) obtained from pre-shear amphibole relics linked to regional metamorphism of the Wilson Terrane. Results attribute the structural and metamorphic reworking during shearing to the late stages of the Cambrian-Ordovician Ross Orogeny and to the Middle-Late Ordovician probably in relation to the beginning of deformation in the Lachlan Orogen, thus precluding any appreciable impact of the Devonian-Carboniferous Borchgrevink event in the study area.  相似文献   

8.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

9.
Structural and 40Ar/39Ar data from the mylonitic rocks of the North Dabashan zone (NDZ) document kinematic and tectonothermal characteristics of the Mesozoic collisional and intra-continental orogenesis in the southern part of the Qinling orogenic belt. The NDZ underwent two deformational phases during the Mesozoic period. The earlier one is characterized by top-to-the-SW thrust ductile shearing along a NW-trending shear zone (DSZ-1), while the later one is featured by dextral strike-slip ductile shearing along another NNW-trending shear zone (DSZ-2). The timing of the two deformation events have been constrained to be 245–189 Ma and 178–143 Ma respectively, by using mica 40Ar/39Ar geochronology. It is proposed that the earlier deformation event was associated with the Middle Triassic–Early Jurassic collision between the North and South China Blocks, which generated the initial framework of the NDZ; and the later one was related to the Middle Jurassic to Early Cretaceous intra-continental orogeny in East Asia, which caused a significant eastward extrusion of the South Qinling and led to the formation of the SW-convex Dabashan foreland orocline. The distinguishing between these two deformation events sheds a new insight into the Mesozoic tectonic evolution of the Qinling orogenic belt.  相似文献   

10.
中国阿尔泰造山带南缘额尔齐斯断裂带的构造变形及意义   总被引:6,自引:4,他引:2  
刘飞  王镇远  林伟  陈科  姜琳  王清晨 《岩石学报》2013,29(5):1811-1824
额尔齐斯断裂是中亚造山带中的一条重要深大断裂,对于额尔齐斯断裂运动性质一直有着走滑断层、逆冲断层和压扭性断层等不同看法.本文在中国阿尔泰造山带南缘开展了详细的构造地质学工作,研究结果表明,额尔齐斯断裂及其次级断裂组成额尔齐斯断裂带.额尔齐斯断裂带在中国境内是一条宽约20 ~ 40km,长约400km,经受不同程度构造作用的强应变带,剪切作用影响范围遍布整个中国阿尔泰造山带南缘.额尔齐斯断裂带经历了左行走滑和右行走滑两个阶段.结合前人有关韧性剪切带成因型金矿、同构造岩体侵位与变形关系及对变质岩石40Ar/39Ar年代学研究,本文认为额尔齐斯断裂带的左行走滑构造形成于早二叠世(283~275Ma).早二叠世之后,额尔齐斯断裂带叠加了右行走滑事件,其活动时限可能为晚二叠世(260 ~ 245 Ma),其规模远远小于前期的左行走滑构造.额尔齐斯断裂带走滑活动性质的确定,为二叠纪北疆及整个中亚造山带造山后调整过程中不同的构造方式提供了佐证.  相似文献   

11.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

12.
The Serra do Azeite shear zone (SASZ) is a northeast-trending regional structure in southeastern Brazil. Kinematic analysis carried out in the SASZ suggests a ductile sinistral transtensional regime in amphibolite facies conditions. Constrictional, flattened, and simple-shear strain domains occur in mylonites with stretching lineation plunging to the east–southeast. Kinematic indicators suggest oblique top–down-to-the-east–southeast and sinistral strike-slip components along variably oriented shear planes. Results of the simple geometrical construction applied to the shear-zone pattern, coupled with field data and kinematic analysis, suggest that sinistral transtensional shearing resulted from east–northeast-directed crustal extension and sinistral strike-slip displacement, accompanied by north–northeast/south–southwest contraction and vertical thinning. The K/Ar and Ar/Ar cooling ages match the proposed interval for crustal extension in the central Mantiqueira province (0.6–0.58/0.57 Ga) based on ages of alkaline granitoids and volcanic rocks. These data indicate types-I and -S granite magmatism, as well as metamorphism and dextral transpressional deformation along the Ribeira belt. Therefore, we interpret the transtensional regime as a result of southwest-directed lateral extrusion and uplift crustal slices (overall oblique extrusion) during an orogenic-scale partitioned transpressional regime. Our results suggest this regime was coeval with a phase of regional stretching subparallel to the Ribeira belt, which would explain the coexistence of extensional and compressional structures during overall plate convergence.  相似文献   

13.
Seven eclogite facies samples from lithologically different units which structurally underlie the Semail ophiolite were dated by the 40Ar/39Ar and Rb–Sr methods. Despite extensive efforts, phengite dated by the 40Ar/39Ar method yielded saddle, hump or irregularly shaped spectra with uninterpretable isochrons. The total gas ages for the phengite ranged from 136 to 85 Ma. Clinopyroxene–phengite, epidote–phengite and whole‐rock–phengite Rb–Sr isochrons for the same samples yielded ages of 78 ± 2 Ma. We therefore conclude that the eclogite facies rocks cooled through 500 °C at c. 78 ± 2 Ma, and that the 40Ar/39Ar dates can only constrain maximum ages due to the occurrence of excess Ar inhomogeneously distributed in different sites. Our new results lead us to conclude that high‐pressure metamorphism of the Oman margin took place in the Late Cretaceous, contemporaneous with ophiolite emplacement. Previously published structural and petrological data lead us to suggest that this metamorphism resulted from intracontinental subduction and crustal thickening along a NE‐dipping zone. Choking of this subduction zone followed by ductile thinning of a crustal mass wedged between deeply subducted continental material and overthrust shelf and slope units facilitated the exhumation of the eclogite facies rocks from depths of c. 50 km to 10–15 km within c. 10 Ma, and led to their juxtaposition against overlying lower grade rocks. Final exhumation of all high‐pressure rocks was driven primarily by erosion and assisted by normal faulting in the upper plate.  相似文献   

14.
The Attic‐Cycladic crystalline belt in the central Aegean region records a complex structural and metamorphic evolution that documents Cenozoic subduction zone processes and exhumation. A prerequisite to develop an improved tectono‐metamorphic understanding of this area is dating of distinct P–T–D stages. To evaluate the geological significance of phengite ages of variably overprinted rocks, 40Ar/39Ar and Rb–Sr analyses were undertaken on transitional blueschist–greenschist and greenschist facies samples from the islands of Syros and Sifnos. White mica geochronology indicates a large age variability (40Ar/39Ar: 41–27 Ma; Rb–Sr: 34–20 Ma). Petrologically similar samples have either experienced greenschist facies overprinting at different times or variations in ages record variable degrees of greenschist facies retrogression and incomplete resetting of isotopic systematics. The 40Ar/39Ar and Rb–Sr data for metamorphic rocks from both islands record only minor, localized evidence for Miocene ages (c. 21 Ma) that are well documented elsewhere in the Cyclades and interpreted to result from retrogression of high‐pressure mineral assemblages during lower pressure metamorphism. Field and textural evidence suggests that heterogeneous overprinting may be due to a lack of permeability and/or limited availability of fluids in some bulk compositions and that retrogression was more or less parallel to lithological layering and/or foliation as a result of, possibly deformation‐enhanced, channelized fluid ingress. Published and new 40Ar/39Ar and Rb–Sr data for both islands indicate apparent age variations that can be broadly linked to mineral assemblages documenting transitional blueschist‐to‐greenschist‐ and/or greenschist facies metamorphism. The data do not record the timing of peak HP metamorphism, but may accurately record continuous (partial) resetting of isotopic systematics and/or (re)crystallization of white mica during exhumation and greenschist facies retrogression. The form of 40Ar/39Ar phengite age spectra are complex with the lowest temperature steps yielding Middle to Late Miocene ages. The youngest Rb–Sr ages suggest maximum ages of 20.6 ± 0.8 Ma (Syros) and 22.5 ± 0.6 Ma (Sifnos) for the timing of greenschist facies overprinting. The results of this study further accentuate the challenges of interpreting isotopic data for white mica from polymetamorphic terranes, particularly when mixing of populations and/or incomplete resetting of isotopic systematics occurs during exhumation. These data capture the full range of isotopic age variations in retrogressed HP rocks documented in previous isotopic studies, and can be interpreted in terms of the geodynamic evolution of the Aegean.  相似文献   

15.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

16.
武夷山北缘断裂带动力学研究   总被引:5,自引:0,他引:5  
华南武夷山北缘边界被绍兴-兴山-东乡断裂带所限。该断裂带到少保留了三期构造事件的形迹,第一期发生在800Ma~900Ma的晚元古代,呈NW向SE的区域推覆韧剪变形运动,以构造混杂岩和区域绿片岩相-角闪岩相变质,强烈的褶皱和韧剪变形为特征,对应于古洋盆关闭,华南复合地体与江南岛弧撞焊接过程,第二期发生在458Ma~421Ma的志留纪,表现为从北向南的韧剪变形运动,伴有左旋走滑韧性剪切,以糜棱岩化和进变质作用为特征.黒云母多变为硅线石。该期变形使第一期构造形迹被强烈选加置换。其动力学背景与闽东南地体朝武夷山的拼贴增生事件有关。第三期属中生代陆内变形,是一种高构造位的左旋走滑脆性剪切,以岩石的破裂和岩块的水平位移为特征.并具转换拉伸性质,导致中生代火山沉积盆地的形成。  相似文献   

17.
The Permo–Triassic collision of the North and South China blocks caused the development of the Dabie–Sulu Orogen in China and Songrim Orogen in the Korean Peninsula. Extension after this collision is known from the Dabie–Sulu Orogen, but post-orogenic extension is not well defined in the Korean Peninsula. Extensional deformation along the southern boundary of the Gyeonggi Massif in Korea is characterized by top–down-to-the-south ductile shearing and subsequent brittle normal faulting, and was predated by regional metamorphism and north-vergent contractional deformation. Extension occurred between ~220 and 185 Ma based on the ages of pre-extensional regional metamorphism and post-extensional pluton emplacement. 40Ar/39Ar dating of syn-extensional muscovite in quartz–mica mylonite yields an age of 187.8 ± 5.6 (2σ) Ma, in agreement with constraints from structural relationships. Together with the extensional deformation identified along the northern boundary of the Gyeonggi Massif (~226 Ma), the extension along the southern boundary is probably related to the exhumation of the massif during late-orogenic or post-orogenic extension associated with the Songrim Orogeny of the Korean Peninsula and forms an important event in the Phanerozoic crustal evolution of East Asia.  相似文献   

18.
New phase equilibrium modelling, combined with U–Th/Pb petrochronology on monazite and xenotime, and 40Ar/39Ar geochronology on white mica, reveal the style of deformation and metamorphism near the southern tip of the extruded Himalayan metamorphic core (HMC). In the Jajarkot klippe, west Nepal foreland, greenschist to lower amphibolite facies metamorphism is entirely constrained to the Cenozoic Himalayan orogeny, in contrast with findings from other foreland klippen in the central Himalaya. HMC rocks exposed in the Jajarkot klippe yield short‐lived, hairpin pressure–temperature–time–deformation paths that peaked at 550–600°C and 750–1,200 MPa at 25 Ma. The Main Central thrust (MCT) and the South Tibetan detachment (STD) bound the base and the top of the HMC, respectively, and were active simultaneously for at least part of their deformation history. The STD was active at c. 27–26 Ma and possibly as late as c. 19 Ma, while the MCT may have been active as early as 27 Ma and was still active at c. 22 Ma. The tectonometamorphic conditions in the Jajarkot klippe are characteristic of crustal thickening and footwall accretion of new material at the tip of the extruding metamorphic orogenic core. Our new results reveal that collisional processes active in the middle to late Miocene at the base of the HMC now exposed in the hinterland were also active earlier, during the Oligocene, at the tip of the southward‐extruding middle crust.  相似文献   

19.
The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan–Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at  32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at  27–29 Ma by the biotite 40Ar/39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but  10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28–36 Ma). During 28–17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.  相似文献   

20.
Field observations, deformation and fabric analyses, and precise age data acquired by zircon SHRIMP, LA-ICP-MS U-Pb and 40Ar-39Ar dating methods have yielded new constraints on the kinematics and dynamics of the Namche Barwa Syntaxis (NBS) which is the eastern corner of the Himalaya. A two-stage model has been established to explain the formation and evolution of the NBS. The northward indentation of the Indian plate beneath the Lhasa terrane began at 55-40 Ma, and crustal materials at this corner were subducted to depths > 70 km where they experienced HP (UHP?) metamorphism. Since 40 Ma, large-scale, right-lateral strike-slip along the Sagaing fault has accommodated the rapid northward movement of the eastern Indian plate corner with respect to the Indochina block. This caused significant and progressive bending of the Indus-Yarlung suture zone (IYSZ) such that it became the Dongjiu-Milin left-lateral, strike-slip, shear zone (DMSZ) in the west and the Aniqiao-Motuo right-lateral, strike-slip, shear zone (AMSZ) in the east. Both zones underwent strong mylonitization. Meanwhile, the HP (UHP?) metamorphic rocks were rapidly exhumed, first into the deep crust at 22-18 Ma and then to the shallow crust to form an antiformal dome at 6-2 Ma. Our model provides new insight into the processes of post-collisional crustal thickening related to the formation of the Himalayan orogenic belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号