首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wadi Araba Valley is a morphotectonic depression along part of theDead Sea Transform (DST) plate boundary that separates the Arabian plateon the east from the Sinai subplate on the west. The Wadi Araba fault(WAF) is the main strike-slip faults one of between the Gulf of Aqaba and the E-Wtrending Khunayzira (Amatzayahu) fault that bounds the southern end ofthe Dead Sea. Just south of the Dead Sea, the WAF cuts across severalgenerations of alluvial fans that formed on tributaries to the Wadi Dahalafter the regression of Late Pleistocene Lake Lisan ca. 15 ka. Geomorphicand stratigraphic evidence of active faulting, including left-laterally offsetstream channels and alluvial-fan surfaces, yielded fault slip-rate data for thenorthern segment of WAF. Typical cumulative displacements of 54 m,39 m, and 22.5 m of stream channels and alluvial-fan surfaces acrossthe fault were measured from detailed geologic and topographic mapping.The 54 m offset of the oldest alluvial-fan surface (Q f1 ) occurredafter the final lowering of Lake Lisan (16–15 ka) and before 11 ka yieldinga slip-rate range of 3.4 mm/yr to 4.9 mm/yr. Based on radiocarbonages of charcoal and landsnail shell samples from the buried Q f2 alluvial-fan deposits exposed in trenches excavated across the fault, the39 m and 22.5 m offsets occurred after 9 ka and 5.8 ka, respectively. These data yield a slip-rate range between 3.9 mm/yr and 6.0 mm/yr.The small variability in these slip-rate estimates for different time periodssuggests that the northern Wadi Araba fault has maintained a relativelyconstant slip rate in the past 15 ka. We calculate an average slip rate of 4.7± 1.3 mm/yr since 15 ka based on the three separate displacementsand age estimates. Five separate offsets of 3 m were measured from gullybends and the offset of small fault-scarp alluvial fans. These displacementdata suggest a coseismic slip of 3 m in the last earthquake, or acumulative slip of 3 m in the past few earthquakes. A maximum slip of3 m correspond to a Mw 7 earthquake that ruptures about 49 km offault length. Using an average slip rate of 4.7 ± 1.3 mm/yr togetherwith a 3-m slip-per-event suggests a maximum earthquake recurrence intervalof this fault segment of 500 to 885 years.  相似文献   

2.
Abundances of major and trace elements were determined for the Tertiary volcanic rocks from SW Hokkaido. The Late Miocene to Pliocene volcanic rocks of this region show geochemical features similar to those of the Quaternary rocks, that is, K/Si, Th/Si and LREE/HREE ratios increasing across the arc, east to west, from the Pacific to the Japan Sea side. In contrast, the Early Miocene volcanic rocks, which are geographically restricted to the Japan Sea coast, are distinct from all later volcanics and show “within-plate” characteristics — in particular, high concentrations of HFS elements. The Quaternary basalts have low Hf/Yb ratios and Hf contents, whereas the Early Miocene basalts are high in Hf/Yb and Hf, similar to Hawaiian alkali basalts. The compositional variation with time may result from the progressive depletion of incompatible HFS elements in the mantle source. Th/Yb ratios increase from Early Miocene to Quaternary, possibly reflecting increase in the LIL element contribution to the mantle source during that time.  相似文献   

3.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough.  相似文献   

4.
Graciano P.  Yumul Jr 《Island Arc》2007,16(2):306-317
Abstract   The different ophiolite complexes in the Philippine island arc system define a progressive younging direction westward. This resulted from the clockwise rotation of the Philippine island arc system during its north-westward translation in the Eocene resulting in its western boundary colliding with the Sundaland–Eurasian margin. As a consequence of this interaction, ophiolite complexes and mélanges accreted into the Philippine island arc system along its western side. A new ophiolite zonation with four belts is proposed that takes into consideration the observed spatial and temporal relationships of the exposed oceanic lithosphere slices. With progressive younging from east to west, Belt 1 corresponds to Late Cretaceous complete ophiolite complexes with associated metamorphic soles along the eastern Philippines, whereas Belt 2 includes Early to Late Cretaceous dismembered ultramafic-mafic complexes with mélanges exposed mainly west of eastern Philippines. Belt 3 is defined by Cretaceous through Eocene to Oligocene ophiolite complexes emplaced along the collision zone between the Philippine Mobile Belt and the Sundaland–Eurasian margin. Belt 4 corresponds to the ophiolite complexes emplaced along continental margins as exposed in the Palawan and Zamboanga–Sulu areas. This proposed zonation hints that the whole Philippine Mobile Belt, except for the strike-slip fault bounded Eocene Zambales ophiolite complex in Luzon, is underlain by Cretaceous proto-Philippine Sea Plate fragments. This is contrary to the previous models that consider only the eastern margin of the Philippines to contain proto-Philippine Sea Plate materials.  相似文献   

5.
Although the precise boundaries and kinematics of the Sinai subplate are still doubtful, it has a significant role in the tectonic evolution of the northern Red Sea region. On the basis of earthquake distribution, the Sinai region can be considered as a subplate partially separated from the African plate by the Suez rift. The relative motion between Africa, Sinai and Arabia is the main source generating the present-day earthquake activity in the Gulf of Suez and the Gulf of Aqaba regions.According to geological observations, the southern segment of the Dead Sea fault system can be characterized by a left-lateral displacement of about 107km since the Middle Miocene, in contrast to the northern segment where only 25 to 35km offset can be inferred. We think that along the southern segment the total displacement was 72km until the late Miocene (10Ma). The earthquake activity is strongly reduced along the northern segment of the Dead Sea fault segment. Therefore, we suggest that the northern part (Yammouneh fault) evolves through initial cracking of the crust due to build-up of stress since the Pliocene time (5Ma) and propagates northward into Lebanon and Syria. This last 5 million years is the period when the southern and northern segments became linked and formed a single fault system with a new displacement of 35km.According to the proposed model the predicted opening pole of the Red Sea is near 34.0oN, 22.0oE with an angle of total rotation of 3.4o since the early miocene, providing a 0.82cm/a opening rate in the northern Red Sea. We suggest that the Dead Sea strike-slip fault was active since Middle Miocene time (15Ma) with a slip rate of 0.72cm/a to provide a total displacement of about 107km. This strike slip motion occured about an Euler pole near 33.0oN, 21.0oE with a rotation angle of about 3.0o. It can be inferred from the proximity of the pole and angle of rotations for the Red Sea and Dead Sea fault that more than 85% of the motion has been accommodated on the Gulf of Aqaba and the Dead Sea fault and less than 15% in the Gulf of Suez.This model predicts a normal extensional motion in the Gulf of Suez with a minor left-lateral strike-slip component. We expect the pole of this motion to be at 31.0oN, 29.0oE, offshore of Alamein city about 320 km west of the Nile Delta. The rate of motion through the last 15Ma (Middle Miocene) is about 0.1 cm/a and the angle of rotation is 0.9o. During this period the total opening of the Suez rift is 15 km while the rest of the motion (45 km) occured mainly through the first phase of the development before the Middle Miocene.  相似文献   

6.
六棱山北麓断裂新活动特征   总被引:6,自引:1,他引:6  
段瑞涛  方仲景 《地震地质》1995,17(3):207-213
通过对六棱山北麓活动断裂的几何结构、分段活动特征及段落边界等方面的地质地貌调查与研究,认为该活动断裂可分为4段,除东段在早更新世有过活动外,其他3段均为晚更新世晚期~全新世活动段,段落长度10~39km。该断裂在晚中生代表现为逆冲性质,至新生代随区域构造应力场的变化而转变为倾滑正断层。各段落上垂直位移量分布呈包络线状,而且各段平均滑动速率不同,西大东小,显示断裂新活动强度自西向东变弱  相似文献   

7.
王华林  侯珍清 《地震研究》1994,17(1):79-107
昌马断裂带是是青藏高原北部一条活动强烈的左旋走滑断裂带。它表现为重力、航磁、地壳厚度的综合异常梯度带,属于断面陡、切割深的超岩石圈断裂。昌马断裂带由12条长4公里至18公里不等的不连续的主断层和4条次级断层组成,可划分为东、中、西三大段落。断裂的水平位移和滑动速率具有分段性,全新世以来,东、中、西三段的左旋水平滑动速率分别为4.1毫米/年,2.6毫米/年和1.5毫米/年。北东东、北北西和北西西三个方向断层的位移具有分级特征,不同级别的位移具有良好的同步性。全新世以来北东东、北北西和北西西三个方向断层的水平滑动速率分别为4.1毫米/年、3.8毫米/年和2.7毫米/年。白垩纪以来,昌马断裂呈天平式运动,显示了枢纽断裂运动特征,枢纽轴位于断裂中段。昌马地震震源破裂性质及其反映的震源应力场与地震破裂带的破裂性质及其反映的构造应力场不一致。昌马地震震源机制解反映了北北西~南南东挤压,作用应力近于水平的震源应力场;昌马地震破裂带的变形组合反映了东北~南西挤压的构造应力场。昌马地震破裂带长120公里,分为东部正走滑段、中部逆走滑段和西部尾端破裂段,显示了多个水平位移峰值。全新世以来,沿昌马断裂发生了6次强震事件,强震复发  相似文献   

8.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

9.
渭河盆地北缘断裂带活动特征的初步研究   总被引:8,自引:1,他引:7       下载免费PDF全文
本文从渭河盆地北缘断裂的形成和活动时代,活动特征等资料出发,结合北缘断裂带及整个盆地历史地震活动和新生界地层发育特征的综合分析,对北缘断裂带的活动期次,主要断层的运动幅度和滑动速率及其时空演变规律和机制等问题进行了探讨。文章指出,北缘断裂带的形成是一个由盆地中心向北逐渐扩展的过程,自上新世起,断层活动明显有东强西弱的变化特征,而且扩展方向也发生了偏转。这一转变及活动强度的东西差异与山西剪切带对渭河盆地的影响密切相关  相似文献   

10.
New data on geology and 21 K–Ar dates of the Late Oligocene–Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26–24 Ma) and was concentrated in the Late Oligocene–Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17–12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3–4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ~ 4–3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene.Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia–Afar deep superplume.  相似文献   

11.
Located at the bend of the northeastern margin of Qinghai-Tibet Plateau, the Haiyuan fault zone is a boundary fault of the stable Alashan block, the stable Ordos block and the active Tibet block, and is the most significant fault zone for the tectonic deformation and strong earthquake activity. In 1920, a M8.5 earthquake occurred in the eastern segment of the fault, causing a surface rupture zone of about 240km. After that, the segment has been in a state of calmness in seismic activity, and no destructive earthquakes of magnitude 6 or above have occurred. Determining the current activity of the Haiyuan fault zone is very important and necessary for the analysis and assessment of its future seismic hazard. To study activity of the Haiyuan fault zone, the degree of fault coupling and the future seismic hazard, domestic and foreign scholars have carried out a lot of research using geology methods and GPS geodetic techniques, but these methods have certain limitations. The geology method is a traditional classical method of fault activity research, but dislocation measurement can only be performed on a local good fault outcrop. There are a limited number of field measurement points and the observation results are not equally limited depending on the sampling location and sampling method. The distribution of GPS stations is sparse, especially in the near-fault area, there is almost no GPS data. Therefore, the spatial resolution of the deformation field features obtained by GPS is low, and there are certain limitations in the kinematic parameter inversion using this method. In this study, we obtain the average InSAR line-of-sight deformation field from the Maomaoshan section to the mid-1920s earthquake rupture segment of the Haiyuan earthquake in the period from 2003 to 2010 based on the PSInSAR technique. The results show that there are obvious differences between the slip rates of the two walls of the fault in the north and the south, which are consistent with the motion characteristics of left-lateral strike-slip in the Haiyuan fault zone. Through the analysis of the high-density cross-fault deformation rate profile of the Laohushan segment, it is determined that the creep length is about 19km. Based on the two-dimensional arctangent model, the fault depth and deep slip rate of different locations in the Haiyuan fault zone are obtained. The results show that the slip rate and the locking depth of the LHS segment change significantly from west to east, and the slip rate decreases from west to east, decreasing from 7.6mm/a in the west to 4.5mm/a in the easternmost. The western part of the LHS segment and the middle part are in a locked state. The western part has a locking depth of 4.2~4.4km, and the middle part has a deeper locking depth of 6.9km, while the eastern part is less than 1km, that is, the shallow surface is creeping, and the creep rate is 4.5~4.8mm/a. On the whole, the 1920 earthquake's rupture segment of the Haiyuan fault zone is in a locked state, and both the slip rate and the locking depth are gradually increased from west to east. The slip rate is increased from 3.2mm/a in the western segment to 5.4mm/a in the eastern segment, and the locking depth is increased from 4.8km in the western segment to 7.5km in the eastern segment. The results of this study refine the understanding of the slip rate and the locking depth of the different segments of the Haiyuan fault zone, and provide reference information for the investigation of the strain accumulation state and regional seismic hazard assessment of different sections of the fault zone.  相似文献   

12.
黄方  何丽娟  吴庆举 《地球物理学报》2015,58(10):3671-3686
基于二维稳态热传导方程,利用有限元数值模拟方法,选取东西向横穿鄂尔多斯盆地地质与地球物理解释大剖面进行了深部温度场数值模拟研究,得到了华北克拉通西部的鄂尔多斯盆地下伏岩石圈热结构特征.地幔热流变化范围:21.2~24.5mW·m-2,体现为东高西低特征.壳幔热流比(Qc/Qm)介于1.51~1.84之间,为"热壳冷幔".与华北东部地幔热流对比表明,西部的鄂尔多斯盆地相对处于稳定的深部动力学环境.在岩石圈热结构研究基础上,对克拉通地震岩石圈与热岩石圈厚度差异进行了对比,研究表明:鄂尔多斯盆地西部地震岩石圈与热岩石圈厚度差异约达140km,而东部的汾渭地堑,渤海湾盆地二者差异逐渐减小.华北克拉通自西向东,地震岩石圈厚度与热岩石圈厚度差异不断减小,意味着华北克拉通岩石圈下部的软流圈地幔黏性系数自西向东逐渐降低,本文从地热学角度可能印证了太平洋俯冲脱水作用对华北克拉通的影响.  相似文献   

13.
在野外实测工作基础上, 对香山北缘活动断裂带东段自晚更新世以来的水平活动强度分时、 分段进行了研究. 结果表明, 该断裂带东段自晚更新世以来, 总体水平活动强度不大: 晚更新世早—中期水平位移速率为1.44 mm/a, 晚期水平位移速率为0.53 mm/a, 全新世水平位移速率为1.01 mm/a. 该断裂带左旋走滑强度在走向上具有不均一性, 而且其活动强度的最大部位(活动中心)随时间向东发生迁移, 碱沟—刘岗井次级断层是现今活动强度最大的次级断层.   相似文献   

14.
The archaeological site of Qasr Tilah, in the Wadi Araba, Jordan is located on the northern Wadi Araba fault segment of the Dead Sea Transform. The site contains a Roman-period fort, a late Byzantine–Early Umayyad birkeh (water reservoir) and aqueduct, and agricultural fields. The birkeh and aqueduct are left-laterally offset by coseismic slip across the northern Wadi Araba fault. Using paleoseismic and archaeological evidence collected from a trench excavated across the fault zone, we identified evidence for four ground-rupturing earthquakes. Radiocarbon dating from key stratigraphic horizons and relative dating using potsherds constrains the dates of the four earthquakes from the sixth to the nineteenth centuries. Individual earthquakes were dated to the seventh, ninth and eleventh centuries. The fault strand that slipped during the most recent event (MRE) extends to just below the modern ground surface and juxtaposes alluvial-fan sediments that lack in datable material with the modern ground surface, thus preventing us from dating the MRE except to constrain the event to post-eleventh century. These data suggest that the historical earthquakes of 634 or 659/660, 873, 1068, and 1546 probably ruptured this fault segment.  相似文献   

15.
三危山断裂位于青藏高原北缘,沿三危山西北麓展布,全长约175 km.根据其几何特征,可以将断裂分为三段:西段(西水沟—树沟子段)、中段(树沟子—十工口子段)和东段(十工口子—双塔段),其构造活动强度与地貌发育程度各段存在明显差异.根据断层陡坎测量和区域年代对比,三危山断裂西段垂直滑动速率约0.1 mm/a,中东段则较低...  相似文献   

16.
The Galilee study area, northern Israel, is at present an uplifted, steep continental margin that formed mainly during the Jurassic and has a large positive isostatic anomaly. Since the Jurassic, it was modified by several tectonomagmatic events, which this study attempts to define and classify by updating, reprocessing and reinterpreting gravity, aeromagnetic and geological data. The prominent Rehovot-Carmel N–S positive reduced-to-pole (RTP) magnetic anomaly caused by the Gevim Volcanics, as well as the coexisting Helez-Gaash high Bouguer gravity and the Pleshet low Bouguer gravity, represent the deep (>5 km) Permo-Triassic dominant horst and graben structure of Israel. The Jonah Ridge and Beirut high SW–NE RTP magnetic anomalies in the Levant basin delineate the Levant continental edge that is marked by a deeply buried horst covered by a Late Cretaceous volcanic complex. The Asher and Devora Jurassic volcanics appear to be responcible for the Atlit and Galilee negative magnetic anomalies and for significant negative gravity anomalies which became clear after removing gravity effect of the upper (post-Turonian) light density sediments from the observed gravity. The volcanics extend along a SW–NE belt parallel to the strike of the Moho. It is suggested here that the Carmel-Gilboa fault propagated during the Late Cretaceous from the Levant basin across the Galilee area southeastward to form the Azraq-Sirhan graben in Jordan. As such, it forms a right-step, en echelon, dextral strike-slip fault with associated tectonic basins of various shapes. During the Oligocene and before formation of the Dead Sea transform (DST), the reactivation of the Azraq-Sirhan graben was accompanied by tectonic driven rift propagation in the opposite direction, from Azraq-Sirhan to northwest. It dispersed into many faults and terminated ∼10 km west of the present DST. During the Miocene it propagated in the same direction and includes internal volcanic activity. The numerous Miocene-Pliocene volcanic centers on the margins of the DST indicate that the preferred pathway for magmas at that time was not within the deep basins of the DST.  相似文献   

17.
北祁连山东段活动断裂带的分段性研究   总被引:7,自引:1,他引:6       下载免费PDF全文
根据北祁连山东段活动断裂带1:5万地质填图资料,系统分析了断裂带的几何学特征,位移分布,滑动速率,古地震及历史地震活动在时空上的非均匀性特征,研究了断裂带的破裂分段性。  相似文献   

18.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

19.
利用区域水系形态研究构造活动特征已有丰富经验,可知铁炉子—栾川—南召断裂带西段——铁炉子断裂,晚更新世以来左旋走滑速率为1.25 mm/a,而东段——栾川—南召断裂则为早—中更新世活动段,2段具有明显的活动性差异,研究二者的构造转换方式,有助于了解块体运动在该断裂带内不同段落间的平衡方式。铁炉子段在洛南盆地分为南北两支,南支断裂下盘发育的冲沟普遍流向北,呈“平行状”水系,而北支断裂下盘发育的冲沟则流向南,并在断层附近有左旋扭动迹象;卢氏盆地中部发育NE走向的沉降中心,剖面分析结果表明,该沉降中心东侧普遍高出西侧70—80 m,结合遥感影像,初步认为卢氏盆地的最新活动或已由盆地边缘向盆地内部迁移,并与铁炉子段尾端组成伸展转换区,最终导致铁炉子断裂与栾川—南召断裂的活动性差异。  相似文献   

20.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号