首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monthly median virtual height (hF) of the F-region was studied for a period of 6 years (1980–1985) from sunspot maximum to minimum, using data from 11 ionosonde stations in the Japanese-Australian longitudinal sector, in an invariant latitude range: 37°N to 54°S. The night-time maximum in the median height progressively decreases equatorwards, particularly in the local winter and spring, while a reverse weak tendency is observed in summer. The median height reaches peak in both hemispheres from 1 to 2 years after sunspot maximum then decreases towards sunspot minimum. A second diurnal maximum in hF, preceded by a well-defined minimum, was consistently observed over the solar cycle close to the sunrise time at the F-region, mainly at low invariant latitudes (9–20°). The second maximum has a distinct seasonal variation, being most pronounced in winter and diminishing in summer. It is envisaged that the second peak in hF is associated with the wave disturbance generated by the supersonic motion of the sunrise terminator. Possible effects of the background height variations on the propagation of the magnetic storm-induced travelling ionospheric disturbances are discussed.  相似文献   

2.
From an analysis of K-indices at three low latitude stations it is shown that the geomagnetic response to the passage of a sector boundary depends both on the nature of the boundary and on the phase of solar activity. Larger geomagnetic response is associated with (+ ?) boundary especially during conditions of low solar activity. A marked difference, especially for the (? +) boundary in the nature of the geomagnetic response between pre-1957 and post-1957 data is clearly demonstrated. Study of the geomagnetic response for separate UT intervals reveals that the effect due to different UT diurnal variations of activity on days of opposite polarity are manifested more clearly in association with post-boundary periods.  相似文献   

3.
The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.  相似文献   

4.
The characteristics of long period Pc5 pulsations (frequency 3·33-1·67 mHz; period 300–600 sec) for stations in the subauroral, auroral and polar zones are studied for 1967. These pulsations occur mainly in the auroral and polar zones with one morning and one evening peak; in the cusp region they occur most frequently near local noon. The evening peak gets stronger and appears farther away from noon with increasing geomagnetic activity. Periods are shorter and amplitudes larger in the morning compared to the evening hours. Only in a small latitudinal belt (60–70°) do the periods tend to increase with latitude. Amplitudes are almost always maximum near the central line of the auroral zone and drop much more sharply towards lower latitudes than towards higher latitudes. Considerable diurnal variations and also variations with magnetic activity are found to exist in the occurrence-latitude and amplitudelatitude profiles. In all the three regions the occurrence and the amplitude of these pulsations increase with magnetic activity to a certain level after which results become uncertain. Periods either do not change very much or at some stations decrease as activity increases.  相似文献   

5.
Ionosonde data, obtained on blanketing sporadic E at some equatorial stations during the I.G.Y. have been analysed to yield temporal and latitude variations. The results are compared with corresponding ones for the middle latitudes and they are also discussed in the light of the wind-shear mechanism. The main features of the occurrence frequency are (i) the absence of a morning peak in the daily variation, (ii) an equinoctial maximum and a June-solstitial minimum, (iii) and a stronger dependence on the dip angle (or geomagnetic latitude) than on geographic latitude. The latitude variation obtained also suggests that blanketing sporadic E would occur over both the dip and geomagnetic equators.  相似文献   

6.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

7.
From rocket and radar-meteor wind observations, annual and semi-annual components of the zonal flow are derived for latitudes N at heights between 60 and 130 km. Height regions of maximum and minimum amplitude are described with reference to changes in phase. The annual components decrease with height throughout the mesosphere and, after a reversal of phase, enhance to 25 m/sec at 100 ± 5 km. The semi-annual components have maximum amplitudes of 25 m/sec over a wide range of latitude in two height regions at 90 and 120 km and in a limited range of latitude (near 50°) at 65 km.

Calculated temperatures and log densities are discussed in terms of amplitude and phase as functions of height and latitude. Below 100 km a comparison is made with temperature amplitudes derived from independent temperature data. Above 100 km the annual temperature variation maximizes at 115 km and is particularly large at high latitudes (exceeding 50°K). On the other hand, the semi-annual component increases rapidly with height between 110 and 120 km at all latitudes maximizing at the 120 km level, where amplitudes exceed 25°K at high and low latitudes and 10°K at mid-latitudes. The annual component of log density, like the temperature variation, is largest at high latitudes up to 125 km. The semi-annual variation has a minimum at 110–115 km, above which amplitudes increase with height, reaching 5–12 per cent at 130 km according to latitude. The phases at and near 130 km for the annual and semi-annual density variations are very close to those found at greater heights from satellite orbits and amplitudes could be readily extrapolated to agree with those in the satellite region.  相似文献   


8.
Neutral density data were obtained near 400km (1600 LT) from a microphone density gauge on OGO-6 from 0°G to 40°N magnetic latitude for 25 September–3 October 1969. Several geomagnetic storms occurred during this period (ap varied from 0 to 207). Least-squares fits were made to data points on density-ap and density-Dst scatter diagrams, where the density values selected were delayed in time behind ap and Dst. An equation representing the least-squares fit was computed for each delay time. The equation of best fit (and the corresponding time delay between the density and the magnetic index which resulted in this best fit) was found by choosing the equation that gave the minimum standard error. For example, the best fit at 10°N geomagnetic latitude occurred for ap at t — 3 hr, where t is the time of the density values. The implications of the time differences associated with the best fits at various latitudes and longitudes are discussed with regard to the time delays involved in geomagnetic heating of the neutral upper atmosphere.

A low-latitude density bulge has been found between 0°N and 40°N whose magnitude varies with ap. DeVries (1972b) has independently discovered this daytime phenomenon. If the bulge is a semi-permanent feature near the equinoxes because of the enhanced geomagnetic activity, this may help explain the semi-annual effect in density, which was uncovered first in the drag data from low inclination satellites.  相似文献   


9.
The occurrence of the third (z-ray) component of the F2-trace on ionograms is investigated at high- and mid-latitudes. Diurnal variations show a systematic shift, with magnetic inclination, of the time of maximum occurrence. Seasonal variations show a winter maximum, and an inverse sunspot-cycle relationship exists. Maximum occurrence appears between a magnetic inclination of 70° and 80° with a fall-off either side.

Evidence is presented to suggest a z-ray association with “Spread-F” fronts, and a possible mechanism for the recording of the z-ray trace at the transmitter site is described. This involves longitudinal propagation of the o-mode at its normal reflection level, coupling at this point, and ultimate reflection for the z-ray mode as a result of sloping ionization contours belonging to “Spread-F” fronts extending in directions perpendicular to the magnetic meridian.

An association with V.L.F. emissions (“dawn-chorus”) is discussed.  相似文献   


10.
Magnetometer studies of the periods of mid-latitude ULF pulsations have produced conflicting results on the variation of the pulsation periods with both latitude and local time. Since the mid-latitude geomagnetic field is not expected to be significantly distorted by the solar wind, the observed diurnal period variations should be determined by changes in the ambient plasma density. We have applied a physically realistic plasmasphere model to the determination of pulsation eigenperiods over a 24-h interval at L=2.3 (appropriate to Wellington, New Zealand). The resulting model pulsation eigenperiods are largest during the day, with minimum and maximum values at 05.00 and 18.00 L.T. respectively. The model predicts a general increase in the eigenperiods during the replenishment of the protonosphere after a period of geomagnetic activity.  相似文献   

11.
Geomagnetic data for the year 1967 from seven Canadian observatories, spanning the subauroral, auroral and polar zones, have been analysed to investigate the characteristic variation of Pc5 period with several geophysical variables. Pulsations in the whole spectrum of Pc5 (period range 150–600 s) were found to occur at all of the observatories. Those with smaller periods occurred more frequently at lower latitudes while those with longer periods occurred more frequently at higher latitudes. Daily variation of the periods of Pc5 showed little change with seasons or with magnetic activity. Periods, in general, had two daily maxima which appeared at different local times in different zones. A predominant morning peak was noted at all stations except Baker Lake, where a mid-day maximum of the period was found. The Pc5 periods tended to increase with geomagnetic activity at lower latitude stations, and to decrease with activity at stations in the polar cap for low to moderateKp levels. At high activity levels these trends appeared to reverse, though results are less certain. In different seasons and for the whole year the periods increased almost linearly with latitude. However when similar analysis was done for individual hours of the day and for different magnetic activity groups, this linear relationship between period and geomagnetic latitude was not evident. Efforts to detect a 27-day recurrence tendency of Pc5 periods did not succeed.Contributions from the Earth Physics Branch No. 495.  相似文献   

12.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

13.
The properties of specific high-latitude pulsations (ipcl) reveal the existence of a significant diurnal variation in latitude of the position of the day side cusp (Δφ 6°). This systematic change of the position of the cusp during 24 hr must be taken into account when the rapid shirtings of the cusp connected with the changes of magnetic activity are studied.

A method of determination of the position of the cusp, using a limited number of ground stations is suggested.  相似文献   


14.
Data from an East-West line of magnetometer stations stretching approximately along 67° geomagnetic latitude from western Alberta (290° geomagnetic longitude) to western Quebec (350° geomagnetic longitude) in Canada have been used to study the longitudinal characteristics of Pc5 geomagnetic pulsations. This paper concerns the analysis of 3 days' data of relatively intense pulsational activity which occurred around the middle of October in 1976. The intensity variations of Pc5 activity on longitude and time clearly show that the activity is localized in longitude in the morning sector and confused in the afternoon sector. Pulsational activity in the morning sector for two of the events studied appears to be markedly enhanced across the dawn terminator and midway through the pre-noon quadrant. A study of the longitudinal phase variation indicates that the eastern stations lead in phase before noon and lag in phase after noon. This implies that the signals propagate away from noon toward the dawn-dusk meridian. A systematic reversal in the sense of polarization in the horizontal plane was observed when the line of stations rotated across noon. The polarization characteristics in the vertical planes of the events recorded by stations in eastern Canada between 318° and 350° geomagnetic longitude appear to be stationary with respect to time suggesting that the polarization characteristics of pulsations are influenced by geoelectric structures. The implications of these morphological features will be discussed.  相似文献   

15.
The effect of ions on whistler dispersion characteristics has been studied. It is shown that the significant changes in the dispersion characteristics of low-latitude whistlers are brought about by the presence of ions. The dispersions for Nainital (geomagnetic lat. 19°1'N) and Gulmarg (geomagnetic lat. 24°10'N) are found to peak around 800 Hz. The short whistler sonograms recorded at Nainital and Gulmarg have been analysed, using the complete dispersion equation and the effect of ions has been shown. At higher frequencies the dispersion is found to decrease steadily and becomes independent of ions. Some examples of short whistlers have been found whose characteristics do not conform to the general trend of low-latitude whistlers, and, on the other hand, these whistlers show a constant dispersion unaffected by ions up to a fairly low frequency and thereafter decrease sharply at lower frequencies.  相似文献   

16.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

17.
Hourly means of the geomagnetic elements recorded at Lerwick have been analysed to determine the effect of monthly sunspot number on the solar and lunar daily variations. The diurnal term of the solar variation in declination is found to have a distinct semiannual component that is independent of sunspot number. Thus this semiannual variation is not generated by the heliographic latitude or axial process proposed by Cortie (1912).  相似文献   

18.
Observation of ionograms recorded at about fifteen high latitude stations shows there the same morphological types of F-lacunae (disappearance of echoes from the F1, the F2 or the complete F-layer) as in Terre Adélie. The phenomenon is aestival and diurnal everywhere, but the shape of occurrence histograms varies from one station to another. A statistical study shows that the occurrence in the various stations (of the same hemisphere) is correlated, all the more as the considered stations have similar invariant latitudes. Occurrence is correlated with the daily index of magnetic activity Ap, a correlation which is maximum at about 75° invariant latitude and decreases on both sides. A study of particular events shows a clear relation between lacunae occurrence and the position and moving of the cleft (as deduced empirically from the Kp index), results which can be interpreted in terms of a previously described model.  相似文献   

19.
The longitudinal phase variation of Pc3-4 micropulsations has been investigated using data from three stations at geomagnetic latitude ~54°, in the British Isles. With one exception, the events analysed showed a phase change of ? 10° per degree of longitude. Apparent longitudinal phase velocities were in the approximate range 250–350 km/sec with a general tendency to decrease with increasing period. In most cases the Western station was leading in phase and there was no obvious diurnal pattern. The significance of these results to theoretical work is discussed.  相似文献   

20.
This paper presents some features of the ionospheric response observed in equatorial and mid-latitudes region to two strong geomagnetic storms, occurring during Oct. 19–23, 2001 and May 13–17, 2005 and to understand the phenomena of pre-storm that lead to very intense geomagnetic storms. The result point to the fact that pre-storm phenomena that leads to intense ionospheric storm are; large southward turning of interplanetary magnetic field Bz, high electric field, increase in flow speed stream, increase in proton number density, high pressure ram and high plasma beta. The magnitude of Bz turning into southward direction from northward highly depends upon the severity of the storm and the variation in F2 layer parameter at the time of geomagnetic storm are strongly dependent upon the storm intensity. A detailed analysis of the responses of the ionosphere shows that during the storm periods, foF2 values depleted simultaneously both in the equatorial and mid latitude. Observation also shows that low to moderate variations in ionospheric F2 at the pre-storm period may signal the upcoming of large ionospheric disturbances at the main phase. The ionospheric F2response for low and mid latitude does not show any significant differences during the storm main phase and the pre-storm period. The ionospheric response during the pre-storm period is thought very puzzling. The period is observed to be depleted throughout with low-moderate effect across all the stations in the low and mid latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号