共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhen-Ru Wang Min Li Yi Zhao Astronomy Department Nanjing University Nanjing Institute of Chinese Classics Nanjing University Nanjing 《中国天文和天体物理学报》2006,6(5)
Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833-1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833-1034 and the BC 48 guest star are obtained. The initial period P0 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now. 相似文献
2.
W. W. Tian M. Haverkorn † H. Y. Zhang 《Monthly notices of the Royal Astronomical Society》2007,378(4):1283-1286
New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21-cm H i -line emission and continuum emission data from the Southern Galactic Plane Survey. SNR G351.7+0.8 has a flux density of 8.4 ± 0.7 Jy at 1420 MHz. Its spectral index is 0.52 ± 0.25 ( S = v −α ) between 1420 and 843 MHz, typical of adiabatically expanding shell-like remnants. H i observations show structures possibly associated with the SNR in the radial velocity range of −10 to −18 km s−1 , and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than 6.8×104 yr . A young radio pulsar PSR J1721−3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721−3532. There is an unidentified, faint X-ray point source 1RXS J172055.3−353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8. 相似文献
3.
S. Johnston N. Wex L. Nicastro R.N. Manchester A.G. Lyne 《Monthly notices of the Royal Astronomical Society》2001,326(2):643-648
We report here on multifrequency radio observations of the pulsed emission from PSR B1259−63 around the time of the closest approach (periastron) to its B2e companion star. There was a general increase in the dispersion measure (DM) and scatter-broadening of the pulsar, and a decrease in the flux density towards periastron although fluctuation in these parameters were seen on time-scales as short as minutes. The pulsed emission disappeared 16 d prior to periastron and remained undetectable until 16 d after periastron.
The observations are used to determine the parameters of the wind from the Be star. We show that a simple model, in which the wind density varies with radius as r−2 , provides a good fit to the data. The wind is highly turbulent with an outer scale of ≤1010 cm and an inner scale perhaps as small as 104 cm, a mean density of ∼106 cm−3 and a velocity of ∼2000 km s−1 at a distance of ∼50 stellar radii. We find a correlation between DM variations and the pulse scattering times, suggesting that the same electrons are responsible for both effects. 相似文献
The observations are used to determine the parameters of the wind from the Be star. We show that a simple model, in which the wind density varies with radius as r
4.
M. Chernyakova A. Neronov F. Aharonian Y. Uchiyama T. Takahashi 《Monthly notices of the Royal Astronomical Society》2009,397(4):2123-2132
PSR B1259−63 is a 48-ms radio pulsar in a highly eccentric 3.4-yr orbit with a Be star SS 2883. Unpulsed γ-ray, X-ray and radio emission components are observed from the binary system. It is likely that the collision of the pulsar wind with the anisotropic wind of the Be star plays a crucial role in the generation of the observed non-thermal emission. The 2007 periastron passage was observed in unprecedented details with Suzaku , Swift , XMM–Newton and Chandra missions. We present here the results of this campaign and compare them with previous observations. With these data we are able, for the first time, to study the details of the spectral evolution of the source over a 2-month period of the passage of the pulsar close to the Be star. New data confirm the pre-periastron spectral hardening, with the photon index reaching a value smaller than 1.5, observed during a local flux minimum. If the observed X-ray emission is due to the inverse Compton (IC) losses of the 10-MeV electrons, then such a hard spectrum can be a result of Coulomb losses, or can be related to the existence of the low-energy cut-off in the electron spectrum. Alternatively, if the X-ray emission is a synchrotron emission of very high-energy electrons, the observed hard spectrum can be explained if the high-energy electrons are cooled by IC emission in Klein–Nishina regime. Unfortunately, the lack of simultaneous data in the TeV energy band prevents us from making a definite conclusion on the nature of the observed spectral hardening and, therefore, on the origin of the X-ray emission. 相似文献
5.
I.H. Stairs R.N. Manchester A.G. Lyne V.M. Kaspi † F. Camilo J.F. Bell N. D'Amico M. Kramer F. Crawford ‡ D.J. Morris A. Possenti N.P.F. McKay S.L. Lumsden L.E. Tacconi-Garman R.D. Cannon N.C. Hambly P.R. Wood 《Monthly notices of the Royal Astronomical Society》2001,325(3):979-988
We report on the discovery of a binary pulsar, PSR J1740−3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350 kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11 M⊙ . An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045−7319. 相似文献
6.
7.
The recently discovered young supernova remnant (SNR) RX J0852.0−4622 has attracted much interest since its discovery because of the possibility that it may have been generated by the nearest supernova in recent history. We note the presence of two Parkes Multibeam Survey pulsars within the boundary of the remnant. We discuss the properties of the two pulsars and the likelihood of either of them being physically linked to the SNR. We tentatively suggest that, given the current uncertainties in the distance to RX J0852.0−4622, one of these pulsars, the 65-ms period PSR J0855−4644 could indeed be the compact remnant of this supernova explosion. If the pulsar birth site is at the geometrical centre of the nebula, then, for the transverse pulsar velocity to be reasonable, the SNR must be nearby (around 250 pc) and no younger than about 3000 yr old. 相似文献
8.
B. W. Stappers B. M. Gaensler † S. Johnston 《Monthly notices of the Royal Astronomical Society》1999,308(3):609-617
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3 , respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars. 相似文献
9.
S. M. Ord B. A. Jacoby A. W. Hotan M. Bailes 《Monthly notices of the Royal Astronomical Society》2006,371(1):337-342
We present the results of a high-precision timing campaign directed at the binary millisecond pulsar J1600−3053. Submicrosecond pulsar timing has long been the domain of bright, low dispersion measure millisecond pulsars or large diameter telescopes. This experiment, conducted using the Parkes radio telescope in New South Wales, Australia, and utilizing the latest baseband recording hardware, has allowed this pulsar, although distant and faint, to present residuals to a model of its spin behaviour of 650 ns over a period of more than 2 yr. We have also constrained the orbital inclination via Shapiro delay to be between 59° and 70° to 95 per cent confidence and obtained a scintillation velocity measurement indicating a transverse velocity less than 84 km s−1 . This pulsar is demonstrating remarkable stability comparable to, and in most cases improving upon, the very best long-term pulsar timing experiments. If this stability is maintained, the current limits on the energy density of the stochastic gravitational wave background will be reached in four more years. 相似文献
10.
11.
R. Landi A. De Rosa A. J. Dean L. Bassani P. Ubertini A. J. Bird 《Monthly notices of the Royal Astronomical Society》2007,380(3):926-932
HESS J1616−508 is one of the brightest emitters in the TeV sky. Recent observations with the IBIS/ISGRI telescope onboard the INTEGRAL spacecraft have revealed that a young, nearby and energetic pulsar, PSR J1617−5055, is a powerful emitter of soft γ-rays in the 20–100 keV domain. In this paper, we present an analysis of all available data from the INTEGRAL , Swift , BeppoSAX and XMM–Newton telescopes with a view to assessing the most likely counterpart to the High Energy Stereoscopic System (HESS) source. We find that the energy source that fuels the X/γ-ray emissions is derived from the pulsar, both on the basis of the positional morphology, the timing evidence and the energetics of the system. Likewise the 1.2 per cent of the pulsar's spin-down energy loss needed to power the 0.1–10 TeV emission is also fully consistent with other HESS sources known to be associated with pulsars. The relative sizes of the X/γ-ray and very high energy sources are consistent with the expected lifetimes against synchrotron and Compton losses for a single source of parent electrons emitted from the pulsar. We find that no other known object in the vicinity could be reasonably considered as a plausible counterpart to the HESS source. We conclude that there is good evidence to assume that the HESS J1616−508 source is driven by PSR J1617−5055 in which a combination of synchrotron and inverse-Compton processes combine to create the observed morphology of a broad-band emitter from keV to TeV energies. 相似文献
12.
13.
We present an analysis of strong single pulses from PSR J0034-0721. Our observations were made using the Urumqi 25-m radio telescope at a radio frequency of 1.54GHz. A total of 353 strong pulses were detected during eight hours of observing. The signal-to-noise ratios of the detected pulses range from 5 to 11.5. The peak fluxes of those pulses are 17 to 39 times that of the average pulse peak. The cumulative distribution of the signal-to-noise ratios of these strong pulses has a rough power-law distribution... 相似文献
14.
15.
Katherine E. McGowan W. Thomas Vestrand Jamie A. Kennea Silvia Zane Mark Cropper France A. Córdova 《Astrophysics and Space Science》2007,308(1-4):309-316
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only
emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s
proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The
morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources.
We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values
found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law
fit, with the thermal emission most likely originating in a hot polar cap. 相似文献
16.
17.
A. Sierpowska-Bartosik W. Bednarek 《Monthly notices of the Royal Astronomical Society》2008,385(4):2279-2288
At least one massive binary system containing an energetic pulsar, PSR B1259−63/SS2883, has been recently detected in the TeV γ-rays by the HESS telescopes. These γ-rays are likely produced by particles accelerated in the vicinity of the pulsar and/or at the pulsar wind shock, in comptonization of soft radiation from the massive star. However, the process of γ-ray production in such systems can be quite complicated due to the anisotropy of the radiation field, complex structure of the pulsar wind termination shock and possible absorption of produced γ-rays which might initiate leptonic cascades. In this paper, we consider in detail all these effects. We calculate the γ-ray light curves and spectra for different geometries of the binary system PSR B1259−63/SS2883 and compare them with the TeV γ-ray observations. We conclude that the leptonic inverse-Compton model, which takes into account the complex structure of the pulsar wind shock due to the aspherical wind of the massive star, can explain the details of the observed γ-ray light curve. 相似文献
18.
W. Z. Zou N. Wang R. N. Manchester J. O. Urama G. Hobbs Z. Y. Liu J. P. Yuan 《Monthly notices of the Royal Astronomical Society》2008,384(3):1063-1068
Six glitches have been recently observed in the rotational frequency of the young pulsar PSR B1737−30 (J1740−3015) using the 25-m Nanshan telescope of Urumqi Observatory. With a total of 20 glitches in 20 yr, it is one of the most frequently glitching pulsars of the ∼1750 known pulsars. Glitch amplitudes are very variable with fractional increases in rotation rate ranging from 10−9 to 10−6 . Interglitch intervals are also very variable, but no relationship is observed between interval and the size of the preceding glitch. There is a persistent increase in , opposite in sign to that expected from slowdown with a positive braking index, which may result from changes in the effective magnetic dipole moment of the star during the glitch. 相似文献
19.
M. J. Keith M. Kramer A. G. Lyne R. P. Eatough I. H. Stairs A. Possenti F. Camilo R. N. Manchester 《Monthly notices of the Royal Astronomical Society》2009,393(2):623-627
We report the discovery of PSR J1753−2240 in the Parkes Multibeam Pulsar Survey data base. This 95-ms pulsar is in an eccentric binary system with a 13.6-d orbital period. Period derivative measurements imply a characteristic age in excess of 1 Gyr, suggesting that the pulsar has undergone an episode of accretion-induced spin-up. The eccentricity and spin period are indicative of the companion being a second neutron star, so that the system is similar to that of PSR J1811−1736, although other companion types cannot be ruled out at this time. The companion mass is constrained by geometry to lie above 0.48 solar masses, although long-term timing observations will give additional constraints. If the companion is a white dwarf or a main-sequence star, optical observations may yield a direct detection of the companion. If the system is indeed one of the few known double neutron star systems, it would lie significantly far from the recently proposed spin-period/eccentricity relationship. 相似文献