首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genus Horiopleura Douvillé is restricted to the Mediterranean and southwestern Asian regions, and is represented by eight species developed during the late Barremian–Albian. This revision of species contributed to delineate generic and specific characters. The definition of species is based on a set of external and internal qualitative and quantitative characters, the key characters being size, radial bands, ornamentation and the presence of a left posterior canal. Morphometry documents the dimorphism of some species, corroborated by regression analysis. Horiopleura dumortieri is an upper Barremian–lowermost Bedoulian species from SE France, Horiopleura brevis n. sp. is a Bedoulian, Mediterranean species, extending to the lower Gargasian, Horiopleura gigantea (pro Monopleura) is a Bedoulian species, restricted the Ukrainian Carpathes. Horiopleura lamberti and H. almerae are Upper Aptian to lower Albian species, and are known from Southern Europe and North Africa. Horiopleura haydeni is essentially late Aptian and typifies the southwestern Asia “Yasin fauna”. Horiopleura distefanoi and H. gemmellaroi (both formerly placed in Polyconites) are restricted to the Albian of the peri-Adriatic regions and North Africa, the former being present in the Middle East. Multiple correspondence analysis using six categorical variables and their categorical states, applied to the comparison of species, tends to corroborate our overall taxonomic frame-work, and reveals three groups of species with distinctive ages.  相似文献   

2.
Nineteen benthonic and planktonic foraminiferal zones and their subzones have been recognized in the Tethyan cretaceous successions along the four sections analyzed in the northwestern Zagros fold–thrust belt within the preforeland–foreland basin. A detailed micropaleontological investigation revealed eight benthonic zones from the Qamchuqa Formation (Barremian to Lower Early Cenomanian) including: the Choffatella decipiens interval zone, C. decipiens/Palorbitolina lenticularis total range zone, C. decipiens/Salpingoporella dinarica interval zone, Mesorbitolina texana total range zone, Mesorbitolina subconcava total range zone, Orbitolina qatarica total range zone, Orbitolina sefini total range zone, and the Orbitolina concava partial range zone. The Rotalipora cushmani total range zone was recorded in the Dokan Formation that overlies the Qamchuqa Formation of the Late Cenomanian age. The Gulneri Formation is represented only by the Whitnella archaeocretacea partial range zone/Heterohelix moremani total range subzone and indicates the Late Cenomanian/Early Turonian age. Six planktonic foraminiferal zones were recorded from the Kometan Formation, indicating the Late Cenomanian to Early Campanian age, and are represented by the R. cushmani/H. moremani subzone, Helvetotruncana helvetica total range zone, Marginotruncana sigali partial range zone, Dicarinella primitiva interval range zone, Dicarinella concavata interval zone, Dicarinella assymetrica total range zone, and Globotruncanita elevata partial range zone. Two planktonic foraminferal zones were recorded also and these are related to the Globotruncana (fornicata, stuartiformis, elevata, and ventricosa) assemblage zone, Globotruncana calcarata total range subzone, from the Shiranish Formation, Lower Late Campanian, while the second zone is nominated as the Globotruncana (arca, tricarinata, esnehensis, and bahijae) assemblage zone, Globotruncana gansseri interval subzone, and Globotruncana contusa total range zone of the Late Campanian to basal middle Maastrichtian age. The last zone is related to the Abathomphalus mayaroensis partial range zone (of Late Maastrichtian age) and occasionally intercalated with the OrbitoidesLoftusia benthic zones. An important hiatus, between the Qamchuqa and Kometan formations was proved and manifests Pre-Aruma unconformity, and is occasionally associated with the global Cenomanian–Turonian Oceanic Anoxic Euxinic Event, while the Maastrichtian red bed of the Shiranish Formations mostly points to Tethyan upper Cretaceous Oceanic Red Bed.  相似文献   

3.
4.
The dynamics of radiolarian evolution in the late Albian–Campanian is analyzed, and several stages are recognized. The first stage (late Albian–middle Cenomanian), related to the MCE regional anoxic event, showed low evolutionary tempos and hence lacked structural change in radiolarian communities. The second stage (late Cenomanian–early Turonian), corresponding to ОАЕ 2, which was a global anoxic event, is characterized by a decrease in the number of genera, while many genera showed increased diversification of species composition. At this stage, a considerable number of genera became extinct and appeared, suggesting an increased rate of the radiolarian evolution. The third stage (middle Turonian–early Coniacian), including the beginning of ОАЕ 3, is characterized by a stabilized number of genera. The fourth stage (late Coniacian–Santonian) completely encompasses ОАЕ 3 except for its very beginning. At this stage, the radiolarian communities underwent a significant structural change, while their rate of evolution increased considerably. Nevertheless, during the ОАЕ 3 stage, a distinct trend toward a decrease in generic diversity continued from the late Cenomanian to the middle Turonian. The fifth stage (Campanian) is characterized by quite significant changes in the assemblage composition, while the trend toward a gradual decrease in the number of genera steadily continued. At this stage, which coincided with a considerable cooling, twice as many genera became extinct as during ОАЕ 2. The analysis of the dynamics of radiolarian evolution showed that the anoxic MCE, ОАЕ 2, and ОАЕ 3 events did not result in degradation of radiolarian assemblages. This suggests that this group has significant stratigraphic potential. In general, the evolution of radiolarians in the Late Cretaceous was gradual. By the end of the Campanian, nearly half of the generic diversity was composed of genera which appeared at the beginning of the Cretaceous and earlier.  相似文献   

5.
The Lower Cretaceous ammonite fauna of Japan was influenced by the Tethyan, Boreal and North Pacific realms with their oceanic current patterns and ammonite distributions. The hypothesis of oceanic circulation can be utilized to interpret the existence of the “Bering Strait” and the changing position of the “Boreal front,” that is the contact region of warm and cold-water masses. To understand such a system fully, a comprehensive understanding of the geographical distribution of ammonite faunas is required. The occurrence of twenty-five ammonite species, belonging to twenty genera, is confirmed in the Barremian to Albian of Japan. Of these, 24 species are described in this paper, including Barremites macroumbilicus sp. nov. The fauna can be divided into three associations, lower, middle, and upper, indicating late Barremian, late Aptian, and late Albian of the European standard zonation. The faunal characters suggest that the habitats of these ammonite faunas may have changed during later Early Cretaceous, with faunas characterizing three different environments, i.e., nearshore, intermediate, and distal shelf to upper slope setting. Ammonites of the lower association (late Barremian) are related to those of the Tethys, Boreal European, and circum-Pacific regions, and suggest that the Early Cretaceous Katsuuragawa Basin was deposited under the influence of currents from both high latitude and equatorial areas. The occurrence of Crioceratites (Paracrioceras) suggests that the Boreal European elements, including Simbirskites and Crioceratites (Paracrioceras), transited between Northwest Europe and Japan through the Arctic Sea, indicating that the Pacific Ocean was connected with the Arctic Sea at that time. The second association (late Aptian) is composed of ammonites of the Tethyan and circum-Pacific regions. As European Boreal ammonite taxa are absent in this association, it is concluded that the Pacific Ocean probably was not connected with the Arctic Sea at the time. Consequently, the “Boreal Front,” marking the contact between warm and cold water masses, was located at mid-latitude in the “Bering Strait” region during Barremian and subsequently moved northward during Albian. The uppermost ammonite association (late Albian) also consists of Tethyan and circum-Pacific taxa. Desmoceras (Pseudouhligella) poronaicum expanded its range with northward and eastward circulation of oceanic currents, suggesting the current must have represented a warm water-mass from the equator. The species subsequently migrated from the southern Katsuuragawa Basin to the Hokkaido area during late to latest Albian.  相似文献   

6.
An integrated radio-astrochronological framework of the Agrio Formation in the Andean Neuquén Basin of west-central Argentina provides new constraints on the age and the duration of the late Valanginian through Hauterivian stratigraphic interval. A CA-ID TIMS U-Pb age of 126.97 ± 0.04(0.07)[0.15] Ma is presented here from the upper Hauterivian Agua de la Mula Member of the Agrio Formation. Biostratigraphic data from ammonoids and calcareous nannofossils and this high precision new radioisotopic age, together with three former ones from the same Agrio Formation are combined with new astrochronological data in the Andes. These are correlated with modern cyclostratigraphic studies in the classical sections of the Mediterranean Province of the Tethys, supporting detailed interhemispheric correlations for the Early Cretaceous. We also provide new δ13C data from the Agrio Formation which are compared with records from the classic Tethyan sections. According to our calibration, the minimum in the values in the mid-Hauterivian appears to be synchronous and, thus, another important stratigraphic marker for global correlation. A new duration of 5.21 ± 0.08 myr is calculated for the Hauterivian Stage, starting at 131.29 ± 0.19 Ma and ending at 126.08 ± 0.19 Ma. The difference between the duration of the Hauterivian in GTS2016 and in this study is 1.32 myr while the base and top of the GTS2016 Hauterivian differ respectively by 3.40 and 4.69 myr.  相似文献   

7.
Wood fossil charcoal is identified from the upper Lower Cretaceous (Serra do Tucano Formation, Aptian–Albian) of Roraima (North Brazil). The presence of charcoal demonstrates the occurrence of Early Cretaceous palaeo-wildfires for the first time in this region and only the third time for the entirety of South America. A gymnospermous taxonomic affinity can be established for the charred woods and a relationship with conifers is likely, thus providing additional evidence for the taxonomic composition of Early Cretaceous floras in this region.  相似文献   

8.
Radiolarian paleobiogeography for the late Albian–Santonian is proposed for the first time. The paleobiogeographic differentiation is found to be different for the Albian, Cenomanian, Turonian, and Coniacian–Santonian. The Tethyan and Boreal superrealms can be recognized for the Albian–Santonian. For the Albian–Santonian, the Tethyan Superrealm can be subdivided into realms: Atlantic-Mediterranean, Carpathian-Caucasian, and Tropical-Pacific. The boundaries of these realms changed throughout geological time. The Boreal Superrealm recognized for the Albian so far cannot be subdivided into realms, whereas in the Cenomanian it included the East European and Western Siberian realms without a clear definition of the boundaries and the Boreal-Pacific (in the North Pacific). The Boreal Superrealm is subdivided in the Turonian into two realms (European-Western Siberian and Boreal-Pacific), and in the Coniacian–Santonian, it is subdivided into three realms (European, Western Siberian, and Boreal-Pacific). The Austral Superrealm can be recognized only for the Albian and Cenomanian, and because of the lack of data, it cannot be delineated for the Turonian and Coniacian–Santonian.  相似文献   

9.
Diversity of palmately lobed leaves of angiosperms of the early–middle Albian floras of the Kolyma River Basin, the Omsukchan Coal Basin, Khabarovsk and Primorye Regions was studied. Leaf fossils, previously compared with those of genera Aralia, Sassafras and Lindera, now reassigned to the fossil genus Araliaephyllum. Four new combinations and one new species are published: A. kolymense (Kryshtofovich) Golovneva, comb. nov., A. luciferum (Kryshtofovich) Golovneva, comb. nov., A. ussuriense (Krassilov) Golovneva, comb. nov., A. ievlevii (Samylina) Golovneva, comb. nov., and A. popovii Golovneva, sp. nov. The type material has been restudied in detail, and lectotypes have been selected to all newly typified species. These species share many lauralean morphological and venation features. They represent the most likely early members of this group. This relationship is based on detailed study of the leaf architecture and comparison with other fossils with studied epidermal features. This study expands our knowledge of radiation and biogeography patterns of early angiosperms in northeastern Asia.  相似文献   

10.
Features of the chemical composition of platinum-group mineral assemblages from chromitites of the zonal Svetly Bor, Veresovy Bor, and Nizhny Tagil clinopyroxenite–dunite massifs of the Middle Urals are compared for the first time.  相似文献   

11.
A new multi-thermochronological dataset from Corsica–Sardinia is here employed to constrain the Meso–Cenozoic evolution of the Western Mediterranean area and the problematic transition in space and time between the opposite-dipping Alpine (European) and Apenninic (Adriatic) subductions.The dataset, including zircon and apatite fission track and apatite (U–Th)/He data, covers the whole Meso–Cenozoic time interval, and fits the theoretical age pattern that is expected in distal passive margins after continental break-up. This demonstrates that Corsica–Sardinia represents a fragment of the northern Tethyan margin still preserving the thermochronological fingerprint acquired during Middle Jurassic rifting. Mesozoic apatite (U–Th)/He ages from crustal sections located close to the Tethyan rift axis (i.e., central and eastern Sardinia) show that no European continental subduction took place south of Corsica since the Mesozoic. Along the Sardinia transect, post-Jurassic Adria–Europe convergence was possibly accommodated by Adriatic subduction, consistent with the onset of orogenic magmatism. In middle Eocene–Oligocene times, the northward translation of the Adriatic slab beneath the former Tethyan margin induced a coeval northward migration of erosional pulses at the surface, constrained by a trend of progressively decreasing fission track ages from southern Sardinia to NW Corsica. The Adriatic slab reached the Alpine wedge of Corsica by the end of the Oligocene without any breakoff of the European slab, and started retreating in Neogene times triggering the long-recognized basin opening in the backarc region.  相似文献   

12.
Doklady Earth Sciences - U–Th–Pb (SHRIMP II) isotopic dating of accessory zircons from Vendian (Ediacaran) ash tuffs of the Basa formation section (Asha Group, Southern Ural) was...  相似文献   

13.
In the southern Tethyan margin, the Essaouira-Agadir Basin (EAB), south of Morocco, exhibits well-exposed and fossiliferous sections of Aptian–Albian age. Biostratigraphy by ammonoids and sedimentological analysis have been realized for five sections located along an E-W transect in the EAB. The studied successions were dated from the latest Early Aptian to the Early Albian and are characterized by five major sedimentary discontinuities defining at least four main sedimentary sequences. The Late Aptian–Early Albian succession can be considered a gently westward-dipping ramp, marked by a deepening upward evolution. A quantitative study of calcareous nannofossils and calcium carbonate content has been performed on three of these sections. At this time, the EAB was located in the tropical-equatorial hot arid belt. The decrease in both calcium carbonate content and Nannoconus abundances at the Aptian–Albian transition could be the result of cooler climatic conditions recognized in the EAB, and/or of the associated increasing terrigenous input and nutrients, which hindered carbonate production. In the EAB, the nannofossil productivity is higher below the deposition of dark levels, which are coeval with the Niveau Paquier, recognized as the expression in southern France of the OAE 1b (Early Albian). During the Early Albian, the EAB was characterized by nannofossil fluxes two times lower than the upwelling-influenced Mazagan Plateau (southern Tethyan margin) and eight times lower than the Vocontian Basin (northern Tethyan margin). These results show that, with respect to the northern Tethyan margin, trophic conditions in sea surface waters of the pelagic realm of the southern Tethyan margin were lower. Comparable results obtained by Heldt et al. in the neritic realm of the southern Tethyan margin have been ascribed to more arid climatic conditions.  相似文献   

14.
There are several source rock units in the Zagros Basin, but the Cretaceous Kazhdumi and Paleogene Pabdeh formations probably have produced the majority of the commercial hydrocarbons in this area. Among the hydrocarbon provinces of Iran, the Dezful Embayment, which is located southwest of Zagros Mountains, is one of the most prolific regions in the Middle East. Numerous studies have been made in the northern part of the Dezful Embayment, but relatively few have been done in its southern part. The present study focuses on organic matter characterization of two potential source rocks (Kazhdumi and Pabdeh formations) in southern part of the Dezful Embayment. Cuttings samples (114) were collected from 10 wells and evaluated using Rock–Eval pyrolysis and organic petrography in order to characterize the content and type of organic matter and thermal maturity. The results showed that the average total organic carbon (TOC) content of Kazhdumi and Pabdeh formations are 2.48 and 1.62 wt%, respectively. The highest TOC contents for both formations are found in the northern compartment and decreased gradually toward the south. Pyrolysis data reveal that organic matter has a fair to very good hydrocarbon generation potential and are classified as Type II–III and Type III. Rock–Eval Tmax and vitrinite reflectance show that the majority of samples are in the early mature to mature stage of the oil generation window.  相似文献   

15.
Early Cretaceous sediments of Aptian–Albian age outcrop at Munday’s Hill Quarry, Bedfordshire, England. Previous papers describing the section have resulted in different terminologies being applied. The Lower Cretaceous in Bedfordshire is represented by sediments belonging to the Lower Greensand Group and the Gault Clay Formation. Within the Lower Greensand Group in the study area the Woburn Sands Formation, are of Aptian–Albian age. Selected samples have been analysed for palynology. The analysis reveals diverse palynomorph assemblages, including well-preserved dinoflagellate cysts and sporomorphs. Comparison of the assemblages with published records indicates that the lower samples are of Late Aptian age. Forms recorded include common Kiokansium unituberculatum, Cerbia tabulata, Aptea polymorpha and Cyclonephelium inconspicuum. An Early Albian age is indicated for the uppermost sample.  相似文献   

16.
17.
Most of the hydrocarbon resources of the Russkoe–Chaselka Mega-Arch are related to the Pokur Formation reservoirs. They are generally composed of alluvial sandstones and shales. Due to their genesis the Pokur reservoirs have a complex structure and a localized spread within ancient alluvial plains. The performed integrated interpretation of the well and 3D seismic data made it possible to estimate new perspective fields and to geometrize the oil and gas deposits.  相似文献   

18.
The paper presents a biography of S.N. Nikitin, one of the outstanding Russian geologists of the late 19th and early 20th centuries, and provides a review of his contribution to study of the Mesozoic of Central Russia.  相似文献   

19.
Most porphyry Cu deposits in the world occur in magmatic arc settings and are formed in association with calc-alkaline arc magmas related to subduction of oceanic lithosphere. This contribution reviews a number of significant porphyry Cu deposits in the eastern Tethyan metallogenic domain. They widely occur in a variety of non-arc settings, varying from post (late)-collisional transpressional and extensional environments to intracontinental extensional environments related to orogenic and anorogenic processes. Their spatial–temporal localization is controlled by strike–slip faults, orogen-transverse normal faults, lineaments and their intersections in these non-arc settings. These deposits are dominated by porphyry Cu–Mo deposits with minor porphyry Cu–Au and epithermal Au deposits, and exhibit a broad similarity with those in magmatic arcs. The associated magmas are generally hydrous, relatively high fO2, high-K calc-alkaline and shoshonitic, and show geochemical affinity with adakites. They are distinguished from arc magmas and/or oceanic-slab derived adakites, by their occurrence as isolated complexes, high K2O contents (1.2–8.5%), and much wider range of εNd(t) values(? 10 to + 3) and positive εHf(t) values (+ 4.6 to + 6.9). These potassic magmas are most likely formed by partial melting of thickened juvenile mafic lower-crust or delaminated lower crust, but also involving various amounts of asthenospheric mantle components. Key factors that generate hydrous fertile magmas are most likely crust/mantle interaction processes at the base of thickened lower-crust in non-arc settings, rather than oceanic-slab dehydration (as in arc settings). Breakdown of amphibole in thickened lower crust (e.g., amphibole eclogite and garnet amphibolite) during melting is considered to release fluids into the fertile magmas, leading to an elevated oxidation state and higher H2O content necessary for development of porphyry Cu–Mo–Au systems. Copper and Au in hydrous magmas are likely derived from mantle-derived components and/or melts, which either previously underplated and infiltrated at the base of the thickened lower crust, or were input into the primitive magmas by melt/mantle interaction. In contrast, Mo and (part of the) S in the fertile magmas are probably supplied by old crust during melting and subsequent ascent.  相似文献   

20.
The study of Aptian–Albian rudist faunas from the Chilean Central Andes documents the presence of two forms, ascribed to the Monopleuridae: Douvillelia skeltoni an early Aptian species known hitherto from Mexico, and Jerjesia chilensis, an endemic Albian species from Chile and Peru, with a complex taxonomic history. The regional stratigraphy of the Central Andes, combining ammonites and rudists, is consistent with the Caribbean stratigraphic distribution of Jerjesia and Douvillelia. Andean occurrences of the two genera broaden their distributional area on the Pacific side of Americas, and testify their biostratigraphic value. Oceanographic conditions of the Chilean Pacific margin during the Aptian–Albian, including moderate but effective cold oceanic current, upwellings, high productivity and thermal instability, may acknowledge the low taxonomic diversity of rudist assemblages, which look impoverished when compared to their low latitude homologues from the Caribbean regions which were functioning as a dispersal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号