首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of geochronological, petrological–mineralogical, and isotope-geochemical studies of the Tanadon gold deposit in the Greater Caucasus (Republic of North Ossetia–Alania) have made it possible to determine the age of ore veins and identify ore matter sources of sulfide mineralization. The Tanadon deposit is localized in Paleozoic synmetamorphic granitic rocks at the southern margin of the epi-Hercynian Scythian Plate, which is included in the tectonic zone of the Main Caucasus Range. The orebodies are represented by quartz veins varying in thickness and containing complex sulfide mineralization (pyrite, arsenopyrite, chalcopyrite, pyrrhotite, galena, sphalerite, stannite, cobaltite, and bismuthinite). Arsenopyrite is the main repository of invisible gold. Mineralogical data provide evidence for hydrothermal ore formation, which proceeded at least in two stages, giving rise to earlier pyrite + arsenopyrite and later galena + sphalerite + chalcopyrite mineral assemblages. The Tanadon deposit is a zone of intense young magmatic activity. Neointrusions widespread therein are related to the Early Pliocene Tsana Complex (trachyandesitic dikes, ~4.7 Ma in age) and to the Late Pliocene–Early Pleistocene Tepli Complex (dacitic necks, ~1.4 Ma). According to K–Ar dating of sericite from ore-bearing veins, the Tanadon deposit formed synchronously with Early Pliocene dikes of the Tsana Complex. The total duration of the hydrothermal process likely did not exceed hundreds of thousands of years. As follows from Pb-isotope-geochemical data, hydrothermal processes coeval with Early Pliocene magmatic activity, as well as geological relationships between ore-bearing veins and trachyandesitic dikes, show that the sulfide mineralization of the Tanadon deposit is genetically related to the intrusive Tsana Complex. The main source of ore components is represented by hydrothermal solutions produced in an Early Pliocene melt spot localized beneath the considered part of Greater Caucasus. In the adjacent territory of Georgia, a number of ore objects similar in structure and mineral composition to the Tanadon deposit are also genetically and spatially related to the intrusions of the Tsana Complex. Therefore, the Tsana Complex should be regarded as productive and the areas occupied by Early Pliocene intrusive bodies as promising for Au-bearing arsenopyrite and base-metal mineralization.  相似文献   

2.
This paper reports an integrated petrological, geochronological, and isotopic geochemical study of the Pliocene Dzhimara granitoid massif (Greater Caucasus) located in the immediate vicinity of Quaternary Kazbek Volcano. Based on the obtained results, it was suggested that the massif has a multiphase origin, and temporal variations in the chemical composition of its granitoids and their possible sources were determined. Two petrographic types of granitoids, biotite-amphibole and amphibole, were distinguished among the studied rocks of the Dzhimara Massif belonging to the calc-alkaline and K-Na subalkaline petrochemical series. The latter are granodiorites, and the biotite-amphibole granitoids are represented by calc-alkaline granodiorites and quartz diorites and subalkaline quartz diorites. Geochemically, the granitoids of the Dzhimara Massif are of a “mixed” type, showing signatures of S-, I-, A-, and even M-type rocks. Their chemical characteristics suggest a mantle-crustal origin, which is explained by the formation of their parental magmas in a complex geodynamic environment of continental collision associated with a mantle “hot field” regime.
The granitoids of the Dzhimara Massif show wide variations in Sr and Nd isotopic compositions. In the Sr-Nd isotope diagram, their compositions are approximated by a line approaching the mixing curve between the “Common” depleted mantle, which is considered as a potential source of intra-plate basalts, and crustal reservoirs. It was suggested that the mantle source (referred here as “Caucasus”) that contributed to the petrogenesis of the granitoids of the Dzhimara Massif and most other youngest magmatic complexes of the region showed the following isotopic characteristics: 87Sr/86Sr ? 0.7041 ± 0.0001 and
+ 4.1 ± 0.1 at 147Sm/144Nd = 0.105–0.114.
The Middle-Late Pliocene K-Ar ages (3.3–1.9 Ma) obtained for the Dzhimara Massif are close to the ages of granitoids from other Pliocene “neointrusions” of the Greater Caucasus. Based on the geochronological and petrological data, the Dzhimara Massif is formed during four intrusive phases: (1) amphibole granodiorites (3.75–3.65 Ma), (2) Middle Pliocene amphibole-biotite granodiorites and quartz diorites (~3.35 Ma), (3) Late Pliocene amphibole-biotite granodiorites and quartz diorites (~2.5 Ma), and (4) K-Na subalkaline biotite-amphibole quartz diorites (~2.0 Ma).The close spatial association of the Pliocene multiphase Dzhimara Massif and the Quaternary Kazbek volcanic center suggests the existence of a long-lived magmatic system developing in two stages: intrusive and volcanic. Approximately 1.5 Ma after the formation of the Dzhimara Massif (at ca. 400–500 ka), the activity of a deep magma chamber in this area of the Greater Caucasus resumed (possibly with some shift to the east).  相似文献   

3.
Intrusions of the Irtysh Complex are spatially restricted to the regional Irtysh Shear Zone (ISZ) and are hosted in blocks of high-grade metamorphic rocks (Kurchum, Predgornenskii, Sogra, and others) in the greenschist matrix of the ISZ. The massifs consist of contrasting rock series from gabbro to plagiogranite and granite at strongly subordinate amounts of diorite and the practical absence of rocks of intermediate composition (tonalite and granodiorite). The complex was produced in the Early Carboniferous, simultaneously with the onset of the origin of the ISZ itself. The granitoids composing the complex affiliate with diverse petrochemical series (from subaluminous plagiogranite of the andesite series to granite of the calc-alkaline series) and contain similar REE and HFSE concentrations [total REE = 103–163 ppm (La/Yb) n = 3.59–5.44, Zr (200–273 ppm), Nb (7.6–10.6 ppm), Hf (6.1–7.6 ppm), and Ta (0.68–1.19 ppm)] but are different in concentrations in LILE [Rb (3–9 and 121–221 ppm), Sr (213–375 and 77–148 ppm), and Ba (67–140 and 240–369 ppm)] and isotopic composition of Nd (ɛNd(T) from +5.3 in the plagiogranite to −1.2 in the granite) and O (δ18O from +9.4 in the plagiogranite to +14.5 in the granite). Data on the geochemistry and isotopic composition of metamorphic rocks of the Kurchum block and numerical geochemical simulations indicate that the granitoids were generated via the melting of a heterogeneous crustal source, which consisted of upper crustal metapelites and metabasites of the oceanic basement of the blocks of high-grade metamorphic rocks. The differences in the chemical and isotopic compositions of the granitoids were predetermined by the mixing of variable proportions of granitoid magmas derived from metapelite and metabasite sources.  相似文献   

4.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

5.
柴达木盆地北缘西端冷湖花岗岩   总被引:1,自引:0,他引:1  
冷湖花岗岩体由花岗闪长岩和二长花岗岩组成,岩体中发育较多的辉绿岩墙和花岗闪长斑岩岩墙。岩石的常量、稀土、微量元素地球化学研究表明花岗岩类和脉岩类为同源岩浆分异演化而成,Rb-Sr、Sm-Nd同位素特征反映其源岩来自地幔。地球化学判别图解得出,冷湖花岗岩类属I型花岗岩,早期的花岗闪长岩形成于岛弧环境,与柴达木板块、南祁连板块的碰撞有关;晚期的二长花岗岩形成于板块碰撞隆起环境,与阿尔金大型走滑断裂的活动有关。  相似文献   

6.
The paper reports data on the Nd isotopic composition and the evaluated composition of the sources of magmatism that produced massifs of alkali and basic rocks of the Khaldzan-Buregtei group. The massifs were emplaced in the terminal Devonian at 392–395 Ma in the Ozernaya zone of western Mongolia. The host rocks of the massifs are ophiolites of the early Caledonian Ozernaya zone, which were dated at 545–522 Ma. The massifs were emplaced in the following succession (listed in order from older to younger): (1) nordmarkites and dolerites syngenetic with them; (2) alkali granites and syngenetic dolerites; (3) dike ekerites; (4) dike pantellerites; (5) rare-metal granitoids; (6) alkali and intermediate basites and quartz syenites; and (7) miarolitic rare-metal alkali granites. Our data on the Nd isotopic composition [?Nd(T)] and conventionally used (canonical) ratios of incompatible elements (Nb/U, Zr/Nb, and La/Yb) in rocks from the alkaline massifs and their host ophiolites indicate that all of these rocks were derived mostly from mantle and mantle-crustal enriched sources like OIB, E-MORB, and IAB with a subordinate contribution of N-MORB (DM) and upper continental crustal material. The variations in the ?Nd(T) values in rocks of these massifs suggest multiple mixing of the sources or magmas derived from them when the massifs composing the Khaldzan-Buregtei group were produced. The OIB and E-MORB sources were mixed when the rocks with mantle signatures were formed. The occurrence of nordmarkites, alkali granites, and other rocks whose isotopic and geochemical signatures are intermediate between the values for mantle and crustal sources testifies to the mixing of mantle and crustal magmas. The crustal source itself, which consisted of rocks of the ophiolite complex, was obviously isotopically and geochemically heterogeneous, as also were the magmas derived from it. The model proposed for the genesis of alkali rocks of the Khaldzan-Buregtei massifs implies that the magmas were derived at two major depth levels: (1) mantle, at which the plume source mixed with an E-MORB source, and (2) crustal, at which the ophiolites were melted, and this gave rise to the parental magmas of the nordmarkites and alkali granites. The basites were derived immediately from the mantle. The mantle syenites, pantellerites, and rare-metal granitoids were produced either by the deep crystallization differentiation of basite magma or by the partial melting of the parental basites and the subsequent crystallization differentiation of the generated magmas. Differentiation likely took place in an intermediate chamber at depth levels close to the crustal (ophiolite) level of magma generation. Only such conditions could ensure the intense mixing of mantle and crustal magmas. The principal factor initiating magma generation in the region was the mantle plume that controlled within-plate magmatism in the Altai-Sayan area and the basite magmas related to this plume, which gave rise to small dikes and magmatic bodies in the group of intrusive massifs.  相似文献   

7.
The Band-e-Hezarchah granitoids (BHG) is located in the northern margin of the central Iran, where the very old continental crust of Iran is found. The BHG mainly include granodiorite, granite and leucogranite. Small meta-gabbroic stocks and dykes are associated with BHG. U–Pb zircon dating of the BHG granites and metabasites yield 238U/206Pb crystallization ages of ca. 553.6 and 533.5 Ma respectively (Ediacaran–early Cambrian). The metabasites have calc-alkaline signature and their magmas seem to have originated from a mantle wedge above a subduction zone. These rocks are thought to be formed in a continental back-arc setting, related to the oblique subduction of Proto-Tethys oceanic lithosphere beneath the northern margin of Gondwanan supercontinent during Ediacaran–Cambrian time. The initial 87Sr/86Sr ratios and ɛNd (t) values for metabasites are change from 0.705 to 0.706 and −3.5 to −3.6 respectively. Sr–Nd isotope composition of metabasites indicates that these rocks were derived from a subcontinental lithospheric mantle source. The BHG and associated metabasites are coeval with other similar aged metagranites and gneisses from Iranian basements exposed in central Iran, Sanandaj-Sirjan and Alborz zones. These rocks were formed due to continental arc magmatism of Neoproterozoic–early Cambrian, bordering the northern active margin of Gondwana.  相似文献   

8.
ABSTRACT

Late Mesozoic granitoids in South China are generally considered to have been generated under the Palaeo–Pacific tectonic regime, however, the precise subduction mechanism remains controversial. Detailed zircon U–Pb geochronological, major and trace element, and Sr–Nd–Hf isotopic data are used to document the spatiotemporal distribution of the granitoids in Zhejiang Province. Three periods of late Mesozoic magmatism, including stage 1 (170–145 Ma), stage 2 (145–125 Ma), and stage 3 (125–90 Ma), can be distinguished based on systematic zircon U–Pb ages that become progressively younger towards the SE. Stage 1 granitic rocks are predominantly I-type granitoids, but minor S- or A-type rocks also occur. Sr–Nd–Hf isotopic data suggest that these granitoids were generated from hybrid magmas that resulted from mixing between depleted mantle-derived and ancient crust-derived magmas that formed in an active continental margin environment related to the low-angle subduction of the Palaeo–Pacific plate beneath Southeast China mainland. Stage 2 granitic rocks along the Jiangshan–Shaoxing Fault are predominantly I- and A-type granitoids with high initial 87Sr/86Sr, low εNd(t), εHf(t) values and Mesoproterozoic Nd–Hf model ages. These results suggest that stage 2 granitoids were derived from mixing between enriched mantle-derived mafic magmas and ancient crust-derived magmas in an extensional back-arc setting related to rollback of the Palaeo–Pacific slab. Stage 3 granitic rocks along the Lishui–Yuyao Fault comprise mainly A- and I-type granitoids with high initial 87Sr/86Sr ratios, and low εNd(t) and εHf(t) values, again suggesting mixing of enriched mantle-derived mafic magmas with more ancient crustal magmas in an extensional back-arc setting, related in this case to the continued rollback the Palaeo–Pacific plate and the outboard retreat of its subduction zone.  相似文献   

9.
The problems of tectonic control of composition, size, and morphology of synkinematic crustal granitoids are discussed by the example of the Western Sangilen granites (South-East Tuva). Comparative analysis was performed for felsic bodies and massifs spatially confined to tectonic zone (Erzin shear zone): Erzin migmatite–granite complex (510–490 Ma), Matut granitoid massif (510–490 Ma), Bayankol polyphase gabbro-monzodiorite–granodiorite–granite massif (490–480 Ma), and the Nizhneulor Massif (480–470 Ma). It is shown that synkinematic felsic melts during the transition from collisional compression to transpression were formed at different crustal levels. An increase of shear component provided favorable conditions for the migration of felsic melts, increase of size and morphology of intrusive bodies from vein type to harploith (likely, loppoliths and laccoliths) and further to stocks. All kinematic granitoids of the Erzin tectonic zone are ascribed to the crustal S-type granites. Dispersion and average chemical composition of the synkinematic granites strongly depend on the degree of their “isolation” from protolith. From auto- and paraautochthonous granitoids to allochthonous granites, the compositional dispersion decreases and the chemical composition is displaced toward I-type magmatic rocks.  相似文献   

10.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

11.
The results of isotope-geochronological and petrological-geochemical study are reported for Neogene mafic intrusive rocks distributed in the northern part of the Lesser Caucasus (Georgia). It is shown that the young plutonic bodies were formed here in two magmatic stages: in the Middle Miocene (around 15.5 Ma) and in the terminal Miocene (9-7.5 Ma). The first age group includes a microsyenitic massif in Guria (Western Georgia), which was formed in a setting of active continental margin related to the subduction of oceanic part of the Arabian plate beneath the Transcaucasus. The Late Miocene intrusive magmatism already records the incipient within-plate activity: small polyphase bodies of alkaline gabbroids and lamprophyres of Samtskhe (South Georgia) dated around 9-8.5 Ma and teschenite intrusions of Guria dated at 7.5Ma. Petrological-geochemical and isotope-geochemical data indicate that the parental melts of the rocks of all studied Neogene plutonic bodies of the Lesser Caucasus were derived from a single mantle source. Its characteristics are close to those of a Common hypothetical reservoir, which is usually regarded as a source of oceanic and continental hot spot basalts (OIB) but shows some regional peculiarity. The role of crustal assimilation and crystallization differentiation in the genesis of the Miocene rocks of Guria was limited, which is related to the rapid ascent of deep melts to the surface (in a setting of local extension) without intense interaction with host sequences under the absence of consolidated continental lithosphere beneath this part of the Transcaucasus. The parental mantle-derived magmas of the Neogene gabbroids of Samtskhe were strongly contributed by upper crustal material, which caused a change in their isotope (87Sr/86Sr up to 0.70465, ?Nd up to + 2.8) and geochemical characteristics relative to the regional mantle source. In addition, the crustal contamination of mantle basic melts during the late phases of the Samtskhe plutonic bodies formation led to their intense fractionation with precipitation of mainly olivine and pyroxene. The larger scale mantle-crustal interaction during formation of the Samtskhe intrusions was probably related to the fact that the upper lithosphere in this sector of the Transcaucasus contained large Paleozoic blocks, which were made up of granite-metamorphic complexes and prevented a rapid ascent of mantle melts to the surface. The rocks of these blocks were presumably assimilated by mantle magmas in the intermediate chambers at the upper crustal levels.  相似文献   

12.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

13.
In the Tifnoute Valley, three plutonic units have been defined: the Askaoun intrusion, the Imourkhssen intrusion and the Ougougane group of small intrusions. They are made of quartz diorite, granodiorite and granite and all contain abundant mafic microgranular enclaves (MME). The Askaoun granodiorite and the Imourkhssen granite have been dated by LA-ICP-MS on zircon at 558?±?2 Ma and 561?±?3 Ma, respectively. These granitic intrusions are subcontemporaneous to the widespread volcanic and volcano-detrital rocks from the Ouarzazate Group (580–545 Ma), marking the post-collisional transtensional period in the Anti-Atlas and which evolved towards alkaline and tholeiitic lavas in minor volume at the beginning of the Cambrian anorogenic intraplate extensional period. Geochemically, the Tifnoute Valley granitoids belong to an alkali-calcic series (high-K calc-alkaline) with typical Nb-Ta negative anomalies and no alkaline affinities. Granitoids and enclaves display positive εNd-560Ma (+0.8 to +3.5) with young Nd-TDM between 800 and 1200 Ma and relatively low 87Sr/86Sr initial ratios (Sri: 0.7034 and 0.7065). These values indicate a mainly juvenile source corresponding to a Pan-African metasomatized lithospheric mantle partly mixed with an old crustal component from the underlying West African Craton (WAC). Preservation in the Anti-Atlas of pre-Pan-African lithologies (c. 2.03 Ga basement, c. 800 Ma passive margin greenschist-facies sediments, allochthonous 750–700 Ma ophiolitic sequences) indicates that the Anti-Atlas lithosphere has not been thickened and was never an active margin during the Neoproterozoic. After a transpressive period, the late Ediacaran period (580–545 Ma) is marked by movement on near vertical transtensional faults, synchronous with the emplacement of the huge Ouarzazate Group and the Tifnoute Valley granitoids. We propose here a geodynamical model where the Tifnoute Valley granitoids as well as the Ouarzazate Group were generated during the post-collisional metacratonic evolution of the northern boundary of the West African craton. The convergence with the peri-Gondwanan active margin produced brittle fracturing of the cratonic boundary without thickening, allowing rising of magmas. The Tifnoute Valley granitoids display a metasomatized lithospheric mantle source mixed with a minor ancient (2 Ga) continental crust component from the underlying WAC.  相似文献   

14.
The paper reports the results of petrogeochemical and isotope (Sr-Nd-Pb-Hf) study of the Late Paleozoic granitoids of the Anyui–Chukotka fold system by the example of the Kibera and Kuekvun massifs. The age of the granitoids from these massifs and granite pebble from conglomerates at the base of the overlying Lower Carboniferous rocks is within 351–363 Ma (U-Pb, TIMS, SIMS, LA-MC-ICP-MS, zircon) (Katkov et al., 2013; Luchitskaya et al., 2015; Lane et al., 2015) and corresponds to the time of tectonic events of the Ellesmere orogeny in the Arctic region. It is shown that the granitoids of both the massifs and granite pebble are ascribed to the I-type granite, including their highly differentiated varieties. Sr-Nd-Pb-Hf isotope compositions of the granitoids indicate a contribution of both mantle and crustal sources in the formation of their parental melts. The granitic rocks of the Kibera and Kuekvun massifs were likely formed in an Andean-type continental margin setting, which is consistent with the inferred presence of the Late Devonian–Early Carboniferous marginal-continental magmatic arc on the southern Arctida margin (Natal’in et al., 1999). Isotope data on these rocks also support the idea that the granitoid magmatism was formed in a continental margin setting, when melts derived by a suprasubduction wedge melting interacted with continental crust.  相似文献   

15.
江南造山带湖南段中早古生代花岗质岩石对于研究早古生代构造演化以及金成矿作用具有重要的意义。位于该区中段的金鸡金矿床钻孔中新发现有两类花岗质岩石,分别为花岗岩和花岗闪长岩。对两类岩体样品进行了锆石LA-ICP-MS U-Pb测年,获得的年龄分别为(425.2±1.5)Ma和(430.6±1.5)Ma。岩石地球化学数据表明,花岗岩属I型花岗岩,其来源于地壳中变泥质岩石的部分融熔;花岗闪长岩属埃达克岩,其起源于地壳中变砂质岩石的部分融熔。Sr-Nd同位素分析显示,金鸡花岗闪长岩具有较高的(87Sr/86Sr)i(0.722369~0.722488)、较低的(143Nd/144Nd)i(0.511941~0.511990)以及εNd(t)值较低(–8.2~–7.2),并且金鸡花岗闪长岩的二阶段Nd模式年龄值为1.75~1.84 Ga,与江南造山带变质基底的二阶段模式年龄(1.65~2.14 Ga)一致。金鸡金矿床花岗岩和花岗闪长岩的岩石地球化学、年代学以及Sr-Nd同位素特征表明二者是华南早古生代陆内造山事件的产物,岩体成因及地球动力学背景的研究将有助于揭示湘东北地区金矿形成的地球动力学机制。  相似文献   

16.
New isotope-geochronological data (K-Ar, Rb-Sr) provide tight geochronological constraints on the history of Late Cenozoic magmatism on the southern slope of the Greater Caucasus. Several previously unknown, rhyodacite intrusive bodies with an emplacement age of 6.9 ± 0.3 Ma (Late Miocene) are reported from the Kakheti-Lechkhumi regional fault zone in the Kvemo Svaneti-Racha area. Therefore, a pulse of acid intrusive magmatism took place in a period previously considered amagmatic in the Greater Caucasus. The petrological, geochemical, and isotopic data suggest that these rhyodacites are produced by crystallization differentiation of mantle-derived magmas, which are similar in composition to Miocene mafic lavas that erupted a few hundred thousand years later in the adjacent Central Georgian neovolcanic area. The presented results allow the conclusion that the volcanic activity within the Central Georgian neovolcanic area occurred at 7.2–6.0 Ma in two discrete pulses: (1) the emplacement of acid intrusions and (2) the eruption of trachybasaltic lavas. The emplacement of rhyodacite intrusions in the Kvemo Svaneti-Racha area marked the first pulse of young magmatism on the southern slope of the Main Caucasus range and simultaneously represented the second magmatic pulse (after granitoid magmatism of the Caucasian Mineral Waters region) within the entire Greater Caucasus.  相似文献   

17.
Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey   总被引:1,自引:1,他引:0  
Post-collision magmatic rocks are common in the southern portion of the Marmara region (Kap?da?, Karabiga, Gönen, Yenice, Çan areas) and also on the small islands (Marmara, Av?a, Pa?aliman?) in the Sea of Marmara. They are represented mainly by granitic plutons, stocks and sills within Triassic basement rocks. The granitoids have ages between Late Cretaceous and Miocene, but mainly belong to two groups: Eocene in the north and Miocene in the south. The Miocene granitoids have associated volcanic rocks; the Eocene granitoids do not display such associations. They are both granodioritic and granitic in composition, and are metaluminous, calc-alkaline, medium to high-K rocks. Their trace elements patterns are similar to both volcanic-arc and calc-alkaline post-collision intrusions, and the granitoids plot into the volcanic arc granite (VAG) and collision related granite areas (COLG) of discrimination diagrams. The have high 87Sr/86Sr (0.704–0.707) and low 143Nd/144Nd (0.5124–0.5128). During their evolution, the magma was affected by crustal assimilation and fractional crystallization (AFC). Nd and Sr isotopic compositions support an origin of derivation by combined continental crustal AFC from a basaltic parent magma. A slab breakoff model is consistent with the evolution of South Marmara Sea granitoids.  相似文献   

18.
《Lithos》2007,93(1-2):17-38
A suite of schists, gneisses, migmatites, and biotite granitoids from the Puerto Edén Igneous and Metamorphic Complex (PEIMC) and biotite–hornblende granitoids of the South Patagonian batholith (southern Chile) has been studied. For that purpose, the chemistry of minerals and the bulk rock composition of major and trace elements including Rb–Sr and Sm–Nd isotopes were determined. Mineralogical observations and geothermobarometric calculations indicate high-temperature and low-pressure conditions (ca. 600–700 °C and 3 to 4.5 kbar) for an event of metamorphism and partial melting of metapelites in Late Jurassic times (previously determined by SHRIMP U–Pb zircon ages). Structures in schists, gneisses, migmatites and mylonites indicate non-coaxial deformation flow during and after peak metamorphic and anatectic conditions. Andalusite schists and sillimanite gneisses yield initial 87Sr/86Sr ratios of up to 0.7134 and εNd150 values as low as − 7.6. Contemporaneous biotite granitoids and a coarse-grained orthogneiss have initial 87Sr/86Sr ratios between 0.7073 and 0.7089, and εNd150 values in the range − 7.6 to − 4.4. This indicates that metamorphic rocks do not represent the natural isotopic variation in the migmatite source. Thus, a heterogeneous source with a least radiogenic component was involved in the production of the biotite granitoids. The PEIMC is considered as a segment of an evolving kilometre-sized and deep crustal shear zone in which partial melts were generated and segregated into a large reservoir of magmas forming composite plutons in Late Jurassic times. A biotite–hornblende granodiorite and a muscovite–garnet leucogranite show initial 87Sr/86Sr ratios of 0.7048 and 0.7061, and εNd100 values of − 2.6 and − 1.8, respectively, and are thus probably related to Early Cretaceous magmas not involved in the anatexis of the metasedimentary rocks.  相似文献   

19.
Two Late Neoproterozoic post-collisional igneous suites, calc-alkaline (CA) and alkaline–peralkaline (Alk), widely occur in the northernmost part of the Arabian–Nubian Shield. In Sinai (Egypt) and southern Israel they occupy up to 80% of the exposed basement. Recently published U–Pb zircon geochronology indicates a prolonged and partially overlapping CA and Alk magmatism at 635–590 Ma and 608–580 Ma, respectively. Nevertheless in each particular locality CA granitoids always preceded Alk plutons. CA and Alk igneous rocks have distinct chemical compositions, but felsic and mafic rocks in general and granitoids from the two suites in particular cannot be distinguished by their Nd, Sr and O isotope ratios. Both suites are characterized by positive εNd(T) values, from + 1.5 to + 6.0 (150 samples, 28 of them are new analyses), but predominance of juvenile crust in the region prevents unambiguous petrogenetic interpretation of the isotope data. Comparison of geochemical traits of felsic and mafic rocks in each suite suggests a significant contribution of mantle-derived components to the silicic magmas. Model calculation shows that the alkaline granite magma could have been produced by partial (~ 20%) melting of rocks corresponding to K-rich basalts. Material balance further suggests that granodiorite and quartz monzonite magmas of the CA suite could form by mixing of the granite and gabbro end-members at proportions of 85/15. In the Alk suite, alkali feldspar and peralkaline granites have evolved mainly by fractional crystallization of feldspars and a small amount of mafic minerals from a parental syenogranite melt. Thus the protracted, 20 m.y. long, contemporaneous CA and Alk magmatism in the northern ANS requires concurrent tapping of two distinct mantle sources. Coeval emplacement of CA and Alk intrusive suites was described in a number of regions throughout the world.  相似文献   

20.
Abstract: Miocene granitoids of the Tsushima Islands have unique characteristics that cannot be seen in other major granitic plutons in the Japanese Islands as follows: (1) They are granitic in composition but contain synplutonic mafic dikes, abundant mafic enclaves, and intermediate facies between granite and mafic enclaves. (2) They are mixture of magnetite‐bearing and –free facies, but generally magnetite‐free in the marginal part. (3) They are high in K2O content (K65=3. 1) and intermediate in normative corundum (C65=0. 1) and δ18O value (+9% at SiO2 70 %), which may be comparable with those of the Miocene Outer Zone granitoids. (4) Yet the initial Sr ratio is low as 0. 7037. (5) They are high in Cl and S, which occur in fluid inclusions and as pyrrhotite>pyrite, respectively. Two genetic models are considered for the source of the unique granitoid magmas: the continental crust or the upper mantle fertilized with Si, K and 18O. The latter may be the case for the Tsushima granitoids, because of the low initial Sr ratio. The age of the granitoids (16 Ma) indicates the magmatism related to the opening of the Sea of Japan. It is suggested that both basaltic and granitic magmas were generated in the continental lithosphere under an extensional tectonic setting; the two magmas could have been partly mingled. The mingled magma was originally an oxidized type, but reduced during the emplacement by repeated inflow of S and C‐bearing gases from the pelitic wall rocks. Because of the reduction, SO3 sulfur is almost nil in the rock‐forming apatite, and most of sulfur remained in fluid phase of the magma as reduced species. Cl content was high in the original magma and concentrated in the fluid phase of the residual system which dissolved silver, lead and zinc metals. Such a fluid migrated into the Taishu fracture systems, as the magma crystallized, and formed the silver–lead–zinc deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号