首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the evolution of globular clusters with mass spectra under the influence of the steady Galactic tidal field, including the effects of velocity anisotropy. Similarly to single-mass models, velocity anisotropy develops as the cluster evolves, but the degree of anisotropy is much smaller than in isolated clusters. Except for very early epochs of the cluster evolution, the velocity distributions of nearly all mass components become tangentially anisotropic at the outer parts. We examine how the mass function (MF) changes in time. Specifically, we find that the power-law index of the MF decreases monotonically with the total mass of the cluster, in agreement with previous findings based on isotropic models or N -body studies. This is also consistent with the behaviour of the observed slopes of MFs for a limited number of clusters. We attempt to compare our results with multimass King models, although it is almost impossible to fit the entire density profiles for all mass components. When the MF is fixed, the central densities of individual components show significant differences between Fokker–Planck and King models. We obtain 'best-fitting' multimass King models, for which the central density of individual components as well as the total density distribution agrees with the Fokker–Planck models by adjusting the MF. The MFs obtained in this way closely resemble the MF within the half-mass radius of the Fokker–Planck result. Also, we find that the local MFs predicted by Fokker–Planck calculations vary more rapidly with radius than best-fitting multimass King models. The projected velocity profiles for anisotropic models show significant flattening toward the tidal radius compared with the isotropic model. This is caused by the fact that the tangential velocity dispersion becomes dominant at the outer parts. Such a behaviour of velocity profile appears to be consistent with the observed profiles of the collapsed cluster M15.  相似文献   

2.
We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N-body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit > 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(−a/s) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.  相似文献   

3.
Using the standard dynamical theory of spherical systems, we calculate the properties of spherical galaxies and clusters whose density profiles obey the universal form first obtained in high-resolution cosmological N -body simulations by Navarro, Frenk & White (NFW). We adopt three models for the internal kinematics: isotropic velocities, constant anisotropy and increasingly radial OsipkovMerritt anisotropy. Analytical solutions are found for the radial dependence of the mass, gravitational potential, velocity dispersion, energy and virial ratio and we test their variability with the concentration parameter describing the density profile and amount of velocity anisotropy. We also compute structural parameters, such as half-mass radius, effective radius and various measures of concentration. Finally, we derive projected quantities, the surface mass density and line-of-sight as well as aperture-velocity dispersion, all of which can be directly applied in observational tests of current scenarios of structure formation. On the mass scales of galaxies, if constant mass-to-light is assumed, the NFW surface density profile is found to fit HubbleReynolds laws well. It is also well fitted by Sérsic R 1/ m laws, for     but in a much narrower range of m and with much larger effective radii than are observed. Assuming in turn reasonable values of the effective radius, the mass density profiles imply a mass-to-light ratio that increases outwards at all radii.  相似文献   

4.
5.
The paper models the suprathermal plasma as the concatenation of two different gravitating fluids each having its own separate density and pressure. One of the fluids has isotropic pressure while the other has an anisotropic pressure. The system is subjected to a uniform magnetic field which is frozen with the fluids. The gravitational instability of the model for low frequency plane waves has been investigated in a linear framework for plasma parameters relevant to the spiral arms of the galaxy and the cosmic gas clouds. The analysis shows that the wavelength of the instability is strongly dependent upon the anisotropy of the non-thermal plasma.  相似文献   

6.
In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman-Oppenheimer-Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide range of behaviour in the surface tension than is the case with isotropic pressures. In particular, it is possible that anisotropy drastically decreases the value of the surface tension.  相似文献   

7.
A model of compact object coupled to inhomogeneous anisotropic dark energy is studied. It is assumed a variable dark energy that suffers a phase transition at a critical density. The anisotropic Λ-Tolman-Oppenheimer-Volkoff equations are integrated to know the structure of these objects. The anisotropy is concentrated on a thin shell where the phase transition takes place, while the rest of the star remains isotropic. The family of solutions obtained depends on the coupling parameter between the dark energy and the fermionic matter. The solutions share several features in common with the gravastar model. There is a critical coupling parameter that gives non-singular black hole solutions. The mass-radius relations are studied as well as the internal structure of the compact objects. The hydrodynamic stability of the models is analyzed using a standard test from the mass-radius relation. For each permissible value of the coupling parameter there is a maximum mass, so the existence of black holes is unavoidable within this model.  相似文献   

8.
It is well known that the density and anisotropy profile in the inner regions of a stellar system with positive phase-space distribution function (DF) are not fully independent. Here, we study the interplay between density profile and orbital anisotropy at large radii in physically admissible (consistent) stellar systems. The analysis is carried out by using two-component  ( n - γ, γ1)  spherical self-consistent galaxy models, in which one density distribution follows a generalized γ profile with external logarithmic slope n , and the other a standard  γ1  profile (with external slope 4). The two density components have different 'core' radii, the orbital anisotropy is controlled with the Osipkov–Merritt recipe, and for simplicity we assume that the mass of the  γ1  component dominates the total potential everywhere. The necessary and sufficient conditions for phase-space consistency are determined analytically, also in the presence of a dominant massive central black hole, and the analytical phase-space DF of (   n - γ  ,1) models, and of   n - γ  models with a central black hole, is derived for  γ= 0, 1, 2  . It is found that the density slope in the external regions of a stellar system can play an important role in determining the amount of admissible anisotropy: in particular, for fixed density slopes in the central regions, systems with a steeper external density profile can support more radial anisotropy than externally flatter models. This is quantified by an inequality formally identical to the 'cusp slope-central anisotropy' theorem by An & Evans, relating at all radii (and not just at the centre) the density logarithmic slope and the anisotropy indicator in all Osipkov–Merritt systems.  相似文献   

9.
The instability of anisotropic disk systems with elongated stellar orbits has been investigated. N-body generalized polytropic models of stellar disks have been constructed. They are shown to be unstable with respect to the bar formation at any degree of anisotropy. This result differs from the results of the studies of such models by other authors. The bar pattern speed and amplitude have been found. The initial distribution of precession rates and the adiabatic invariants of stellar orbits have been calculated. A bar is shown to be formed in such systems due to the radial orbit instability.  相似文献   

10.
Influence of cosmic ray pressure and kinetic stream instability on space plasma dynamics and magnetic structure are considered. It is shown that in the outer Heliosphere are important dynamics effects of galactic cosmic ray pressure on solar wind and interplanetary shock wave propagation as well as on the formation of terminal shock wave of the Heliosphere and subsonic region between Heliosphere and interstellar medium. Kinetic stream instability effects are important on distances more than 40–60 AU from the Sun: formation of great anisotropy of galactic cosmic rays in about spiral interplanetary magnetic field leads to the Alfven turbulence generation by non isotropic cosmic ray fluxes. Generated Alfven turbulence influences on cosmic ray propagation, increases the cosmic ray modulation, decreases the cosmic ray anisotropy and increases the cosmic ray pressure gradient in the outer Heliosphere (the later is also important for terminal shock wave formation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The existence of the Fundamental Plane imposes strong constraints on the structure and dynamics of elliptical galaxies, and thus contains important information on the processes of their formation and evolution. Here we focus on the relations between the Fundamental Plane thinness and tilt and the amount of radial orbital anisotropy: in fact, the problem of the compatibility between the observed thinness of the Fundamental Plane and the wide spread of orbital anisotropy admitted by galaxy models has often been raised. By using N -body simulations of galaxy models characterized by observationally motivated density profiles, and also allowing for the presence of live, massive dark matter haloes, we explore the impact of radial orbital anisotropy and instability on the Fundamental Plane properties. The numerical results confirm a previous semi-analytical finding (based on a different class of one-component galaxy models): the requirement of stability matches almost exactly the thinness of the Fundamental Plane. In other words, galaxy models that are radially anisotropic enough to be found outside the observed Fundamental Plane (with their isotropic parent models lying on the Fundamental Plane) are unstable, and their end-products fall back on the Fundamental Plane itself. We also find that a systematic increase of radial orbit anisotropy with galaxy luminosity cannot explain by itself the whole tilt of the Fundamental Plane, the galaxy models becoming unstable at moderately high luminosities: at variance with the previous case, their end-products are found well outside the Fundamental Plane itself. Some physical implications of these findings are discussed in detail.  相似文献   

12.
A new class of the simplest equilibrium two-parameter distribution functions for spherical stellar systems with a radially anisotropic stellar velocity distribution is investigated. The models under consideration are a less singular counterpart of the so-called generalized polytropes, which in the past were among the most popular models in works on the equilibrium and stability of gravitating systems. In contrast to the well-known generalized polytropes, the proposed models have finite density and potential at the center. The absence of a singularity is necessary for a proper consideration of the radial orbit instability, which is the most important instability of spherical stellar systems. The main observed parameters of the proposed models (potential, density, anisotropy) are compared with those in well-known equilibrium models.  相似文献   

13.
When the total angular momentum of a binary system is at a critical (minimum) value, a tidal instability occurs (Darwin's instability), eventually forcing the stars to merge into a single, rapidly rotating object. The instability sets in at some critical separation which in the case of contact binaries corresponds to a minimum mass ratio depending on dimensionless gyration radius k 1. If one considers   n = 3  polytrope (fully radiative primary with  Γ1= 4/3  ),   k 21= 0.075  and   q min≈ 0.085–0.095  . There appears to be, however, some W UMa-type binaries with q values very close, if not below these theoretical limits, implying that primary in these systems is probably more centrally condensed. We try to solve the discrepancy between theory and observations by considering rotating polytropes. We show by deriving and solving a modified Lane–Emden equation for   n = 3  polytrope that including the effects of rotation does increase the central concentration and could reduce   q min  to as low as 0.070–0.074, more consistent with the observed population.  相似文献   

14.
This is an examination of the gravitational instability of the major large-scale perturbation modes for a fixed value of the azimuthal wave number m = 1 in nonlinearly nonstationary disk models with isotropic and anisotropic velocity diagrams for the purpose of explaining the displacement of the nucleus away from the geometric center (lopsidedness) in spiral galaxies. Nonstationary analogs of the dispersion relations for these perturbation modes are obtained. Critical diagrams of the initial virial ratio are constructed from the rotation parameters for the models in each case. A comparative analysis is made of the instability growth rates for the major horizontal perturbation modes in terms of two models, and it is found that, on the average, the instability growth rate for the m = 1 mode with a radial wave number N = 3 almost always has a clear advantage relative to the other modes. An analysis of these results shows that if the initial total kinetic energy in an isotropic model is no more than 12.4% of the initial potential energy, then, regardless of the value of the rotation parameter Ω, an instability of the radial motions always occurs and causes the nucleus to shift away from the geometrical center. This instability is aperiodic when Ω = 0 and is oscillatory when Ω ≠ 0 . For the anisotropic model, this kind of structure involving the nucleus develops when the initial total kinetic energy in the model is no more than 30.6% of the initial potential energy.  相似文献   

15.
It is shown that the cuspy density distributions observed in the cores of elliptical galaxies can be realized by dissipationless gravitational collapse. The initial models consist of power-law density spheres such as ρ ∝ r −1 with anisotropic velocity dispersions. Collapse simulations are carried out by integrating the collisionless Boltzmann equation directly, on the assumption of spherical symmetry. From the results obtained, the extent of constant density cores, formed through violent relaxation, decreases as the velocity anisotropy increases radially, and practically disappears for extremely radially anisotropic models. As a result, the relaxed density distributions become more cuspy with increasing radial velocity anisotropy. It is thus concluded that the velocity anisotropy could be a key ingredient for the formation of density cusps in a dissipationless collapse picture. The velocity dispersions increase with radius in the cores according to the nearly power-law density distributions. The power-law index, n , of the density profiles, defined as ρ ∝ r − n , changes from n ≈2.1 at intermediate radii to a shallower power than n ≈2.1 toward the centre. This density bend can be explained from our postulated local phase-space constraint that the phase-space density accessible to the relaxed state is determined at each radius by the maximum phase-space density of the initial state.  相似文献   

16.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

17.
In the homogeneous and isotropic Friedmann–Robertson–Walker minisuperspace model, it is known that there are no Euclidean wormhole solutions in the pure gravity system. Here it is demonstrated explicitly that in Taub cosmology, which is one of the simplest anisotropic cosmology models, wormhole solutions do exist in pure general relativity in both classical and quantum contexts. Indeed, it is realized that it is the nonvanishing momentum or the energy associated with the anisotropy change, that essentially renders the occurrence of both classical and quantum wormholes possible.  相似文献   

18.
We present internal surface brightness profiles, based on Hubble Space Telescope /ACS imaging in the F 606 W bandpass, for 131 globular cluster (GC) candidates with luminosities   L ≃ 104–3 × 106 L  in the giant elliptical galaxy NGC 5128. Several structural models are fitted to the profile of each cluster and combined with mass-to-light ratios ( M / L values) from population-synthesis models, to derive a catalogue of fundamental structural and dynamical parameters parallel in form to the catalogues recently produced by McLaughlin & van der Marel and by Barmby et al. for GCs and massive young star clusters in Local Group galaxies. As part of this, we provide corrected and extended parameter estimates for another 18 clusters in NGC 5128, which we observed previously. We show that, like GCs in the Milky Way and some of its satellites, the majority of globulars in NGC 5128 are well fitted by isotropic Wilson models, which have intrinsically more distended envelope structures than the standard King lowered isothermal spheres. We use our models to predict internal velocity dispersions for every cluster in our sample. These predictions agree well in general with the observed dispersions in a small number of clusters for which spectroscopic data are available. In a subsequent paper, we use these results to investigate scaling relations for GCs in NGC 5128.  相似文献   

19.
In the construction of multimass King–Michie models of globular clusters, an approximated central energy equipartition between stars of different mass is usually imposed by scaling the velocity parameter of each mass class inversely with the stellar mass, as if the distribution function were isothermal. In this paper, this 'isothermal approximation' has been checked and its consequences on the model parameters studied by a comparison with models including central energy equipartition correctly. It is found that, under the isothermal approximation, the 'temperatures' of a pair of components can differ to a non-negligible amount for low concentration distributions. It is also found that, in general, this approximation leads to a significantly reduced mass segregation in comparison with that given under the exact energy equipartition at the centre. As a representative example, an isotropic three-component model fitting a given projected surface brightness and line-of-sight velocity dispersion profiles is discussed. In this example, the isothermal approximation gives a cluster envelope much more concentrated (central dimensionless potential   W = 3.3  ) than under the true equipartition  ( W = 5.9 × 10−2)  , as well as a higher mass function logarithmic slope. As a consequence, the inferred total mass (and then the global mass-to-light ratio) is a factor of 1.4 times lower than the correct value and the amount of mass in heavy dark remnants is 3.3 times smaller. Under energy equipartition, the fate of stars having a mass below a certain limit is to escape from the system. This limit is derived as a function of the mass and W of the component of giant and turn-off stars.  相似文献   

20.
This is the second in a series of papers dedicated to unveiling the mass structure and orbital content of a sample of flattened early-type galaxies in the Coma cluster. The ability of our orbit libraries to reconstruct internal stellar motions and the mass composition of a typical elliptical in the sample is investigated by means of Monte Carlo simulations of isotropic rotator models. The simulations allow a determination of the optimal amount of regularization needed in the orbit superpositions. It is shown that under realistic observational conditions and with the appropriate regularization, internal velocity moments can be reconstructed to an accuracy of ≈15 per cent; the same accuracy can be achieved for the circular velocity and dark matter fraction. In contrast, the flattening of the halo remains unconstrained. Regularized orbit superpositions are applied to a first galaxy in our sample, NGC 4807, for which stellar kinematical observations extend to  3  r eff  . The galaxy seems dark-matter dominated outside   r > 2  r eff  . Logarithmic dark matter potentials are consistent with the data, as well as NFW profiles, mimicking logarithmic potentials over the observationally sampled radial range. In both cases, the derived stellar mass-to-light ratio ϒ agrees well with independently obtained mass-to-light ratios from stellar population analysis. The achieved accuracy is  Δϒ≈ 0.5  . Kinematically, NGC 4807 is characterized by mild radial anisotropy outside   r > 0.5  r eff  , becoming isotropic towards the centre. Our orbit models hint at either a distinct stellar component or weak triaxiality in the outer parts of the galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号