首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Isolated isothermal spheres of N gravitationally interacting points with equal mass are believed to be stable when density contrasts do not exceed 709. That stability limit does not, however, take into consideration fluctuations of temperature near the onset of instability. These are important when N is finite.
Here we correlate global mean quadratic temperature fluctuations with the onset of instability. We show that such fluctuations trigger instability when the density contrast reaches a value near 709×exp(−3.3 N −1/3). These lower values of limiting density contrasts are significantly smaller than 709 when N is not very large, and this suggests (i) that numerical calculations with small N may not reflect correctly the onset of core collapse in clusters with large N , and (ii) that a greater number of globular clusters than is normally believed may already be in an advanced stage of core collapse, because most of the observed globular clusters with parameters that fit quasi-isothermal configurations are close to marginal stability.  相似文献   

4.
5.
We report results of collisional N -body simulations aimed at studying the N dependence of the dynamical evolution of star clusters. Our clusters consist of equal-mass stars and are in virial equilibrium. Clusters moving in external tidal fields and clusters limited by a cut-off radius are simulated. Our main focus is to study the dependence of the lifetimes of the clusters on the number of cluster stars and the chosen escape condition.
We find that star clusters in external tidal fields exhibit a scaling problem in the sense that their lifetimes do not scale with the relaxation time. Isolated clusters show a similar problem if stars are removed only after their distance to the cluster centre exceeds a certain cut-off radius. If stars are removed immediately after their energy exceeds the energy necessary for escape, the scaling problem disappears.
We show that some stars that gain the energy necessary for escape are scattered to lower energies before they can leave the cluster. As the efficiency of this process decreases with increasing particle number, it causes the lifetimes not to scale with the relaxation time. Analytic formulae are derived for the scaling of the lifetimes in the different cases.  相似文献   

6.
7.
In this work we investigate the evolution of the mass function of the Galactic globular cluster system (GCMF) taking into account the effects of stellar evolution, two-body relaxation, disc shocking and dynamical friction on the evolution of individual globular clusters. We have adopted a lognormal initial GCMF and considered a wide range of initial values for the dispersion, σ, and the mean value, 〈log  M 〉. We have studied in detail the dependence on the initial conditions of the final values of σ, 〈log  M 〉, the fraction of the initial number of clusters surviving after one Hubble time and the difference between the properties of the GCMF of clusters closer to the Galactic Centre and those of clusters located in the outer regions of the Galaxy. In most of the cases considered, evolutionary processes alter significantly the initial population of globular clusters and the disruption of a significant number of globular clusters leads to a flattening in the spatial distribution of clusters in the central regions of the Galaxy. The initial lognormal shape of the GCMF is preserved in most cases and if a power-law in M is adopted for the initial GCMF, evolutionary processes tend to modify it into a lognormal GCMF. The difference between initial and final values of σ and 〈log  M 〉 as well as the difference between the final values of these parameters for inner and outer clusters can be positive or negative depending on initial conditions. A significant effect of evolutionary processes does not necessarily give rise to a strong trend of 〈log  M 〉 with the galactocentric distance. The existence of a particular initial GCMF able to keep its initial shape and parameters unaltered during the entire evolution through a subtle balance between disruption of clusters and evolution of the masses of those which survive, suggested by Vesperini, is confirmed.  相似文献   

8.
9.
10.
11.
12.
The new approach outlined in Paper I to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few per cent of the initial number of stars in the cluster mass). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300 000 equal point-mass stars, plus 30 000 equal-mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. The cluster evolution is about three times slower than found by Gao et al. Other features are rather comparable. At every moment we are able to show the individual distribution of binaries in the cluster.  相似文献   

13.
14.
We have studied the evolution of globular cluster systems (GCS) in elliptical galaxies with a power-law initial GCS mass function (GCMF) f ( M )∝ M − α ] similar to that predicted by some theoretical studies of globular cluster formation and to that of young cluster systems observed in merging galaxies.
We have carried out a survey over a large number of different host galaxies and we have considered different values for the index, α , of the initial power-law GCMF ( α =1.5, 1.8, 2.0); we show the dependence of the main GCS final properties (mean mass and dispersion of the final GCMF, fraction of surviving clusters, radial gradient of the GCMF parameters) on the structure of the host galaxy and on the slope of the initial GCMF.
For a subsample of host galaxies with values of effective masses and radii equal to those determined using observational data for a number of giant, normal and dwarf galaxies, our results show that the relation between the final GCMF properties and those of the host galaxies as well as the dependence of the final GCMF parameters on the galactocentric distance within individual galaxies differ from those observed in old GCS: the values of the final GCS mean mass are in general smaller (4.2≲ log  M f≲5.0) than those observed, and the galaxy-to-galaxy dispersion of log  M f is larger than that reported by observational analyses. The results are compared with those of a companion paper in which we investigated the evolution of GCS with a log-normal initial GCMF and in which the final GCS properties were perfectly consistent with observations.  相似文献   

15.
We study the evolution of globular clusters with mass spectra under the influence of the steady Galactic tidal field, including the effects of velocity anisotropy. Similarly to single-mass models, velocity anisotropy develops as the cluster evolves, but the degree of anisotropy is much smaller than in isolated clusters. Except for very early epochs of the cluster evolution, the velocity distributions of nearly all mass components become tangentially anisotropic at the outer parts. We examine how the mass function (MF) changes in time. Specifically, we find that the power-law index of the MF decreases monotonically with the total mass of the cluster, in agreement with previous findings based on isotropic models or N -body studies. This is also consistent with the behaviour of the observed slopes of MFs for a limited number of clusters. We attempt to compare our results with multimass King models, although it is almost impossible to fit the entire density profiles for all mass components. When the MF is fixed, the central densities of individual components show significant differences between Fokker–Planck and King models. We obtain 'best-fitting' multimass King models, for which the central density of individual components as well as the total density distribution agrees with the Fokker–Planck models by adjusting the MF. The MFs obtained in this way closely resemble the MF within the half-mass radius of the Fokker–Planck result. Also, we find that the local MFs predicted by Fokker–Planck calculations vary more rapidly with radius than best-fitting multimass King models. The projected velocity profiles for anisotropic models show significant flattening toward the tidal radius compared with the isotropic model. This is caused by the fact that the tangential velocity dispersion becomes dominant at the outer parts. Such a behaviour of velocity profile appears to be consistent with the observed profiles of the collapsed cluster M15.  相似文献   

16.
We consider the use of N -body simulations for studying the evolution of rich star clusters (i.e. globular clusters).The dynamical processes included in this study are restricted to gravitational (point-mass) interactions, the steady tidal field of a galaxy, and instantaneous mass loss resulting from stellar evolution. With evolution driven by these mechanisms, it is known that clusters fall roughly into two broad classes: those that dissipate promptly in the tidal field, as a result of mass loss; and those that survive long enough for their evolution to become dominated by two-body relaxation.
The time-scales of the processes we consider scale in different ways with the number of stars in the simulation, and the main aim of the paper is to suggest how the scaling of a simulation should be done so that the results are representative of the evolution of a 'real' cluster. We investigate three different ways of scaling time. One of these is appropriate to the first type of cluster, i.e. those that dissipate rapidly; similarly, a second scaling is appropriate only to the second (relaxation-dominated) type. We also develop a hybrid scaling, which is a satisfactory compromise for both types of cluster. Finally we present evidence that the widely used Fokker–Planck method produces models that are in good agreement with N -body models of those clusters that are relaxation-dominated, at least for N -body models with several thousand particles, but that the Fokker–Planck models evolve too fast for clusters that dissipate promptly.  相似文献   

17.
We study spherically symmetrical equilibrium states of collisionless stellar systems confined to a spherical box. These equilibrium states correspond to the statistics introduced by Lynden-Bell in his theory of 'violent relaxation', and are described by a Fermi–Dirac distribution function. We compute the corresponding equilibrium diagram and show that a global entropy maximum exists for any accessible control parameter. This equilibrium state shows a pronounced separation between a degenerate core and a halo. We therefore check that degeneracy is able to stop the gravitational collapse (of a collisionless system), and we propose a simple model for the 'core–halo' structure. We also discuss the relevance of our study for real galaxies or other astrophysical systems such as massive neutrinos.  相似文献   

18.
19.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

20.
We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well-separated components and comparable masses. The derivation of short-period terms is based on an expansion of the rate of change of the Runge–Lenz vector. Then, the short-period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号