首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological Impacts of Climate Change on Inflows to Perth, Australia   总被引:2,自引:0,他引:2  
The effects of climate change due to increasing atmospheric CO2 onthe major tributaries to the Swan River (Perth, Western Australia) have been investigated. The climate scenarios are based on results from General Circulation Models (GCMs) and 1000 year time series are produced using a stochastic weather generator. The hydrological implications of these scenarios are then examined using a conceptual rainfall-runoff model, CMD-IHACRES, to model the response of six catchments, which combine to represent almost 90% of the total flow entering the upper Swan River,and hence the Perth city urban area. The changes in streamflow varies considerably between catchments, exhibiting a strong dependence on the physical attributes of the catchment in question. The increase in the magnitudes of rare flood events despite significant decreases in mean streamflow levels found in some catchments emphasizes the importance of estimating changes in the nature of the precipitation (variance, length of storm and interstorm periods), along with changes in the mean, in climate change scenarios.  相似文献   

2.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

3.
A numerical stream temperature model that accounts for kinematic wave flow routing, and heat exchange fluxes between stream water and the atmosphere, and stream water and the stream bed is developed and calibrated to a data-set from the Lower Madison River, Montana, USA. Future climate scenarios were applied to the model through changes to the atmospheric input data based on air temperature and solar radiation output from four General Circulation Models (GCM) for the region under atmospheric CO2 concentration doubling. The purpose of this study was to quantify potential climate change impacts on water temperature for the Lower Madison River, and to assess possible impacts to aquatic ecosystems. Because water temperature is a critical component of fish habitat, this information could be of use in future planning operations of current reservoirs. We applied air temperature changes to diurnal temperatures, daytime temperatures only, and nighttime temperatures only, to assess the impacts of variable potential warming trends. The results suggest that, given the potential climatic changes, the aquatic ecosystem downstream of Ennis Lake will experience higher water temperatures, possibly leading to increased stress on fish populations.Daytime warming produced the largest increases in downstream water temperature.  相似文献   

4.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

5.
气候变化情景生成技术研究综述   总被引:8,自引:0,他引:8  
吴金栋  王馥棠 《气象》1998,24(2):3-8
简单回顾了气候变化对农业生产影响研究的进展,分析了气候变化情景生成技术研究的必要性,即影响模式与GCMs的嵌套困难及对气候变率和产量变率的认识。指出该技术是目前这一领域研究的关键所在。  相似文献   

6.
M. Bonell 《Climatic change》1998,39(2-3):215-272
The paper initially outlines selected uncertainties influencing climate change and their linkages with hydrology which have led to only a small section of the hydrological community (divided into 2 groups) being pro-active. Due to the foregoing uncertainties, the strategy adopted in this paper will be to focus on the principal conclusions from controlled experimental catchment studies and related process hydrology connected with land-use change arising from anthropogenic influences. The underlying philosophy is that even major natural disruptions to climate cause ecohydrological shifts in the response of landscapes and such changes may be indicated from recent hydrology research evaluating man-made impacts. The paper assesses the existing conclusions from hydrological work undertaken in both the closed forests of the humid tropics and the open forests of the tropical semi-arid regions based mostly from experimentation in headwater catchments. Such studies are concerned with the hydrological responses to the impacts of forest conversion on the change in total water yield and, in turn, the processes connected with dry weather flow (delayed flow) and storm runoff (quickflow). By taking the above approach, possible hydrological changes to climate change will be inferred, including some consideration given the outputs from atmospheric General Circulation Models (GCMs) using the Amazon basin as an example.  相似文献   

7.
Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.  相似文献   

8.
Adapting water resources management to global climate change   总被引:1,自引:0,他引:1  
This paper provides an overview of the impact of global climate change on water resources management. Changes in precipitation and temperature of the scale predicted by General Circulation Models for a doubled CO2 level will significantly affect annual runoff, runoff variability, and seasonal runoff. These in turn will affect water supply, flood protection, hydropower generation, and environmental resources. In addition, climate change will significantly affect the geomorphic response of the watershed, increasing soil erosion and altering the hydrologic response of the watershed. These geomorphic changes will in turn affect water supply, flood hazard, and riparian ecosystems.Possible water resources management responses are identified. This includes reallocation of water supply from less valuable irrigated agriculture to municipal uses; changes in agricultural methods; increasing incentives for integrated flood management; increasing incentives for watershed management; integration of ecosystem needs in water resources planning; and the need to redesign the operation of existing water projects.  相似文献   

9.
Global climate change will impact the hydrologic cycle by increasing the capacity of the atmosphere to hold moisture. Anticipated impacts are generally increased evaporation at low latitudes and increased precipitation at middle and high latitudes. General Circulation Models (GCMs) used to simulate climate disagree on whether the U.S. as a whole and its constituent regions will receive more or less precipitation as global warming occurs. The impacts on specific regions will depend on changes in weather patterns and are certain to be complex. Here we apply the suite of 12 potential climate change scenarios, previously described in Part 1, to the Hydrologic Unit Model of the United States (HUMUS) to simulate water supply in the conterminous United States in reference to a baseline scenario. We examine the sufficiency of this water supply to meet changing demands of irrigated agriculture. The changes in water supply driven by changes in climate will likely be most consequential in the semi-arid western parts of the country where water yield is currently scarce and the resource is intensively managed. Changes of greater than ±50% with respect to present day water yield are projected in parts of the Midwest and Southwest U.S. Interannual variability in the water supply is likely to increase where conditions become drier and to decrease under wetter conditions.  相似文献   

10.
Strategic-scale assessments of climate change impacts are often undertaken using the change factor (CF) methodology whereby future changes in climate projected by General Circulation Models (GCMs) are applied to a baseline climatology. Alternatively, statistical downscaling (SD) methods apply climate variables from GCMs to statistical transfer functions to estimate point-scale meteorological series. This paper explores the relative merits of the CF and SD methods using a case study of low flows in the River Thames under baseline (1961–1990) and climate change conditions (centred on the 2020s, 2050s and 2080s). Archived model outputs for the UK Climate Impacts Programme (UKCIP02) scenarios are used to generate daily precipitation and potential evaporation (PE) for two climate change scenarios via the CF and SD methods. Both signal substantial reductions in summer precipitation accompanied by increased PE throughout the year, leading to reduced flows in the Thames in late summer and autumn. However, changes in flow associated with the SD scenarios are generally more conservative and complex than that arising from CFs. These departures are explained in terms of the different treatment of multidecadal natural variability, temporal structuring of daily climate variables and large-scale forcing of local precipitation and PE by the two downscaling methods.  相似文献   

11.
Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.  相似文献   

12.
Under consideration are results of solving the problem of the river water content estimation under conditions of uncertainties of climate change forecasts and the catchment state with a reference to the Amu Darya River basin. When constructing regional climate models, one selected a multimodel approach using the results of several global models and a statistical downscaling method that made the climate scenarios more detailed. The estimates demonstrated that in the medium- and long-term perspective, the Amu Darya River runoff is expected to decrease. As a result of the Bayesian ideology application, using the calculations got with a total probability formula, a prognostic probability curve of an annual river runoff supply of the basin rivers was derived based on different weights given to the estimates of a mean value for different climate scenarios. Prognostic characteristics of the annual runoff for the Amu Darya basin rivers are estimated in a form acceptable for hydrologic and hydroeconomic application.  相似文献   

13.
Assessing Climate Change Implications for Water Resources Planning   总被引:3,自引:0,他引:3  
Numerous recent studies have shown that existing water supply systems are sensitive to climate change. One apparent implication is that water resources planning methods should be modified accordingly. Few of these studies, however, have attempted to account for either the chain of uncertainty in projecting water resources system vulnerability to climate change, or the adaptability of system operation resulting from existing planning strategies. Major uncertainties in water resources climate change assessments lie in a) climate modeling skill; b) errors in regional downscaling of climate model predictions; and c) uncertainties in future water demands. A simulation study was designed to provide insight into some aspects of these uncertainties. Specifically, the question that is addressed is whether a different decision would be made in a reservoir reallocation decision if knowledge about future climate were incorporated (i.e., would planning based on climate change information be justified?). The case study is possible reallocation of flood storage to conservation (municipal water supply) on the Green River, WA. We conclude that, for the case study, reservoir reallocation decisions and system performance would not differ significantly if climate change information were incorporated in the planning process.  相似文献   

14.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

15.
General Circulation Models (GCMs) are currently used to project future climate. The output of the models is then used to evaluate the effect of a climatic change on resources such as agriculture, forestry, and water resources. The GCMs used in long-term climate studies vary widely in the geographic resolution of their predictions. The approximate matching of resource data to the geographic scale of GCMs is an important step in the evaluation of the effects of climatic change on resources. As gridcell size increases, however, the distribution of resources within cells becomes more heterogeneous, and it becomes more difficult to evaluate the regional effects of climatic change. We quantify the change in resource heterogeneity as a function of gridcell size. Four resource variables (wheat yield, percent forest cover, population density, and percent of land irrigated) are analyzed on the basis of county-averaged data, while assignment to major drainage basins is based on exact watershed boundaries. A major change in resource heterogeneity within gridcells occurs at a grid length of from 1.2° to 3°.  相似文献   

16.
Recent studies on the nature of global warming indicate the likelihood of an asymmetric change in temperature, where night-time minimum temperature increases more rapidly than the day-time maximum temperature. We used a physically based scenario of asymmetric warming combined with climate change scenarios from General Circulation Models (GCMs) outputs and the EPIC (Erosion Productivity Impact Calculator) plant process model to examine the effects of asymmetric temperature change on crop productivity. Our results indicated that the potential effects of global change on crop productivity may be less severe with asymmetric day-night warming than with equal day-night warming.  相似文献   

17.
Future climate scenarios projected by three different General Circulation Models and a delta-change methodology are used as input to the Generalized Watershed Loading Functions – Variable Source Area (GWLF-VSA) watershed model to simulate future inflows to reservoirs that are part of the New York City water supply system (NYCWSS). These inflows are in turn used as part of the NYC OASIS model designed to simulate operations for the NYCWSS. In this study future demands and operation rules are assumed stationary and future climate variability is based on historical data to which change factors were applied in order to develop the future scenarios. Our results for the West of Hudson portion of the NYCWSS suggest that future climate change will impact regional hydrology on a seasonal basis. The combined effect of projected increases in winter air temperatures, increased winter rain, and earlier snowmelt results in more runoff occurring during winter and slightly less runoff in early spring, increased spring and summer evapotranspiration, and reduction in number of days the system is under drought conditions. At subsystem level reservoir storages, water releases and spills appear to be higher and less variable during the winter months and are slightly reduced during summer. Under the projected future climate and assumptions in this study the NYC reservoir system continues to show high resilience, high annual reliability and relatively low vulnerability.  相似文献   

18.
Climate change in the future would have implications for river discharges in Bangladesh. In this article, possible changes in the magnitude, extent and depth of floods of the Ganges, Brahmaputra and Meghna (GBM) rivers in Bangladesh were assessed using a sequence of empirical models and the MIKE11-GIS hydrodynamic model. Climate change scenarios were constructed from the results of four General Circulation Models (GCMs) –CSIRO9, UKTR, GFDL and LLNL, which demonstrate a range of uncertainties. Changes in magnitude, depth and extent of flood discharge vary considerably between the GCMs. Future changes in the peak discharge of the Ganges River are expected to be higher than those for the Brahmaputra River. Peak discharge of the Meghna River may also increase considerably. As a result, significant changes in the spatial extent and depths of inundation in Bangladesh may occur. Faster changes in inundation are expected at low temperature increases than of higher temperature changes. Changes in land inundation categories may introduce substantial changes in rice agriculture and cropping patterns in Bangladesh. Reduction of increased flood hazard due to climate change requires strengthening of flood management policies and adaptation measures in Bangladesh.  相似文献   

19.
Future climate change scenarios have been applied to a linked model at five UK sites. Results indicate a decrease in grassland productivity under a changed climate, resulting from lower soil water content, with possible large consequences to future UK water resource planning. The effect of running the grassland sub-model in isolation, compared with running it as part of a linked model showed that linked models should be used for climate change impacts studies. The location specific response to climate change was also highlighted. The model is mechanistic, consists of four sub-models (grassland, water balance, nitrate and evapotranspiration) and is spatially explicit.  相似文献   

20.
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010–2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040–2069) and late (2070–2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950–1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt’s hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号