首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mafic rocks are widespread on the Liaodong Peninsula and adjacent regions of the North China Craton. The majority of this magmatism was originally thought to have occurred during the Pre-Sinian, although the precise geochronological framework of this magmatism was unclear. Here, we present the results of more than 60 U–Pb analyses of samples performed over the past decade, with the aim of determining the spatial and temporal distribution of mafic magmatism in this area. These data indicate that Paleoproterozoic–Mesoproterozoic mafic rocks are not as widely distributed as previously thought. The combined geochronological data enabled the subdivision of the mafic magmatism into six episodes that occurred during the middle Paleoproterozoic, the late Paleoproterozoic, the Mesoproterozoic, the Late Triassic, the Middle Jurassic, and the Early Cretaceous. The middle Paleoproterozoic (2.1–2.2 Ga) mafic rocks formed in a subduction-related setting and were subsequently metamorphosed during a ca. 1.9 Ga arc–continent collision event. The late Paleoproterozoic (ca. 1.87–1.82 Ga) bimodal igneous rocks mark the end of a Paleoproterozoic tectono-thermal event, whereas Mesoproterozoic mafic dike swarms record global-scale Mesoproterozoic rifting associated with the final breakup of the Columbia supercontinent. The Late Triassic mafic magmatism is part of a Late Triassic magmatic belt that was generated by post-collisional extension. The Middle Jurassic mafic dikes formed in a compressive tectonic setting, and the Early Cretaceous bimodal igneous rocks formed in an extensional setting similar to a back-arc basin. These latter two periods of magmatism were possibly related to subduction of the Paleo-Pacific plate.  相似文献   

2.
Late Mesoproterozoic igneous rocks in the SW Yangtze Block are important for understanding the role of it in reconstruction of the Rodinia supercontinent.In the present study,we report new geochronological,geochemical,and Nd-Hf isotopic data for the Cuoke plagioclase amphibolites and granites in the SW Yangtze Block.Geochronological results show that the plagioclase amphibolites and granites have similar late Mesoproterozoic zircon U-Pb ages of 1168-1162 Ma,constituting a bimodal igneous assemblage.The plagioclase amphibolites have high and variable TiO2 contents(1.15-4.30 wt.%)and Mg#(34-66)values,similar to the tholeiitic series.They are characterized by enrichment in LREEs and LILEs,and have OIB-like affinities with positive Nb and Ta anomalies.The plagioclase amphibolites have positive whole-rockεNd(t)(+3.2 to+4.3)and zirconεHf(t)(+4.3 to+10.7)values,indicating that they were derived from an OIB-like asthenospheric mantle source.The granites belong to the reduced peralkaline A-type series and have negativeεNd(t)value of-6.0 andεHf(t)values of-5.8 to-13.8,indicating a derivation from the partial melting of ancient mafic lower crust.In combination with the~1.05-1.02 Ga bimodal igneous assemblage in the SW Yangtze Block,we propose that the Cuoke 1168-1162 Ma igneous rocks were likely formed in a continental rift basin and argue against the existance of Grenvillian Orogen in the SW Yangtze Block during the late Mesoproterozoic.  相似文献   

3.
An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;?  相似文献   

4.
The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.  相似文献   

5.
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the northwestern subduction of the Nenjiang Ocean.Such a subduction beneath the integrated Xing'an-Erguna Block also gave rise to the East Ujimqin-Xinglong igneous belt in a continental back-arc basin setting.Our new data support an early Paleozoic arc-back-arc model in the northern Great Xing'an Range.  相似文献   

6.
The Dongueni Mont nepheline syenite intrudes migmatitic paragneisses and siliciclastic metasediments of the Barue Complex, Mozambique. This study reports the whole-rock geochemical, U-Pb and Nd isotopic data of the nepheline syenite. The ferroan and alkalic geochemical characteristics are typical of alkaline rocks formed in a within-plate setting. The strong depletion in high field strength elements(HFSEs)(e.g. Ba, Nb, P,and Ti) and enrichment in large ion lithophile elements(LILEs)(e.g. Rb, Th, K, and Pb) are consistent with magmatism in a continental alkaline magmatic province associated with intracontinental rifting. Zircon U-Pb data yielded crystallization ages from 498 ± 19 to 562± 14 Ma,consistent with the Pan-African Orogeny and the inherited zircons yield an age of 1040 Ma, which supports the presence of a Mesoproterozoic crust. Theε_(Nd)(t) values from the nepheline syenite samples range from-15.1 to-16.1 and the T_(DM)values from 1.77 to 1.67 Ga, which indicate that the initial nepheline syenite magma formed from a tholeiitic or mantle source in a within-plate setting with crustal assimilation.  相似文献   

7.
The Ni-Cu-platinum group element sulfide ore deposits of the Kharaelakh Intrusion,Noril′sk Region,Siberia,represent a large concentration of sulfides associated with a small differentiated intrusion formed at the edge of the Siberian Craton in the roots of the Siberian Trap flood basalt.The deposit is associated with an intrusion that occupies a flanking periclinal structure adjacent to the Noril′sk-Kharaelakh Fault.The intrusion is strongly differentiated and comprises taxitic gabbrodolerites,picritic gabbrodolerites,and gabbrodolerites within the main body which in turn forms a chonolith within a sheet-like intrusion that extends laterally to form extensive undifferentiated sills of gabbrodolerite.The intrusion substantially replaces the stratigraphy of the country rocks,and although it appears to have exploited the axis of structures developed in response to transtension,the intrusion has created space by both mechanical dilation of stratigraphy and magmatic replacement of pre-existing sedimentary rocks.The frontal lobes of the main intrusion have complex apophyses of gabrodolerite on a range of scales that demonstrate replacement of the sedimentary rocks and link to the development of an extensive metamorphic halo in the country rocks.This halo is much narrower over the main body of the intrusion,and these observations have implications for the thermal history of the intrusion.Mg-skarns and breccias are developed in the roof of the main body of the intrusion.Within the intrusion,the taxitic rocks contain vesicles and the blebby sulfides developed in the picritic and taxitic gabbrodolerites appear to have a linkage to volatile phases.Cuprous sulfide mineralization developed at the roof of the Kharaelakh Intrusion is associated with metamorphosed and skarn-bearing country rocks,and appears to have been generated by a combination of sulfide fractionation and associated metasomatism.The geological relationships appear consistent with a chonolith model for the development of the differentiated intrusion and mineralization,but the extent of metasmorphism of the country rocks appears to be related to the unusual thickness of gabbrodolerite apophyses at the flanks of the intrusion rather than metamorphism produced by the passage of mafic magma through the intrusion.Variations in disseminated sulfide compositions and metasomatic textures in the skarns are described,and a model is proposed which balances traditional views on the evolution of the magma conduits with the impact of magmatic fluids transported through the magma column(i.e.transmagmatic fluids).The importance of structures in controlling the nature of the conduit,and the resultant small intrusions with excess sulfide is a feature of many other Ni-Cu sulfide deposits including Voisey′s Bay,and it is suggested that the sulfides are more likely to have beentransported from depth into their final resting place rather than developed by in-situ equilibration of sulfide with fresh magma in the chonolith.  相似文献   

8.
Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon dating and a geochemical study on these mafic and surrounding rocks to test the ophiolite hypothesis. The SHRIMP data suggest that three metagabbro samples were metamorphosed at ~1.8 Ga. Numerous ~2.5 Ga zircons display strong oscillatory zoning, characteristic of zircons from granitoid rocks but not from gabbro, so we suggest that these are xenocrystic grains. The age of these xenocrystic zircons and their metamorpbic rims suggests that these mafic blocks formed in Paleoproterozoic. The surrounding gneiss of intermediate composition also contains 2.5 Ga zircons with oscillatory zoning and 1.8 Ga metamorphic rims. Fractionated REE patterns and Nb, Ta, Zr, Hf negative anomalies to variable extent were observed in the mafic blocks and surrounding rocks, also supporting a significant difference in the chemistry of ophiolitic rocks. Our data suggest that many mafic blocks in northern Zunhua are not part of a late Archean ophiolite complex but part of a tectonically dismembered Paleoproterozoic intrusive gabbro complex. This study shows that late Paleoproterozoic metamorphism occurred in the western part of eastern Hebei Province.  相似文献   

9.
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(87Sr/86Sr)_i value of 0.7129–0.7224, εNd(t) values of -9.3 to -7.0 and zircon εHf(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial 87Sr/86Sr ratios of 0.7101–0.7152 and εNd(t) values of -3.8 to -3.4 and zircon εHf(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987114000206   总被引:20,自引:0,他引:20  
The North China Craton(NCC) has a complicated evolutionary history with multi-stage crustal growth,recording nearly all important geological events in the early geotectonic history of the Earth.Our studies propose that the NCC can be divided into six micro-blocks with >~3.0-3.8 Ga old continental nuclei that are surrounded by Neoarchean greenstone belts(CRB).The micro-blocks are also termed as highgrade regions(HGR) and are mainly composed of orthogneisses with minor gabbros and BIF-bearing supracrustal beds or lenses,all of which underwent strong deformation and metamorphism of granulite- to high-grade amphibolite-facies.The micro-blocks are,in turn,from east to west,the Jiaoliao(JL),Qianhuai(QH),Ordos(ODS),Ji’ning(JN) and Alashan(ALS) blocks,and Xuchang(XCH) in the south.Recent studies led to a consensus that the basement of the NCC was composed of different blocks/terranes that were finally amalgamated to form a coherent craton at the end of Neoarchean.Zircon U-Pb data show that TTG gneisses in the HGRs have two prominent age peaks at ca.2.9-2.7 and2.6-2.5 Ga which may correspond to the earliest events of major crustal growth in the NCC.Hafnium isotopic model ages range from ca.3.8 to 2.5 Ga and mostly are in the range of 3.0-2.6 Ga with a peak at2.82 Ga.Recent studies revealed a much larger volume of TTG gneisses in the NCC than previously considered,with a dominant ca.2.7 Ga magmatic zircon ages.Most of the ca.2.7 Ga TTG gneisses underwent metamorphism in 2.6-2.5 Ga as indicated by ubiquitous metamorphic rims around the cores of magmatic zircon in these rocks.Abundant ca.2.6-2.5 Ga orthogneisses have Hf-in-zircon and Nd wholerock model ages mostly around 2.9-2.7 Ga and some around 2.6-2.5 Ga,indicating the timing of protolith formation or extraction of the protolith magma was from the mantle.Therefore,it is suggested that the 2.6-2.5 Ga TTGs probably represent a coherent event of continental accretion and major reworking(crustal melting).As a distinct characte  相似文献   

11.
During the Mesoproterozoic, central Fennoscandia and Laurentia (Greenland) were characterized by a weakly extensional stress regime, as evident from episodic rapakivi granites, dolerite dykes, continental rift intrusives, sandstone basins and continental flood basalts. Along the southwestern active margin of Fennoscandia, the 1.64-1.52 Ga Gothian and 1.52-1.48 Ga Telemarkian accretionary events resulted in oceanwards continental growth. The 1.47-1.42 Ga Hallandian- Danopolonian event included high-grade metamorphism and granite magmatism in southern Fennoscandia. The pre-Sveconorwegian 1.34-1.14 Ga period is characterized by bimodal magmatism associated with sedimentation, possibly reflecting transcurrent tectonics. The Sveconorwegian orogeny involved polyphase imbrication of terranes between 1.14 and 0.97 Ga, as a result of a collision between Baltica and another major plate, followed by relaxation and post-collisional magmatism between 0. 96 and 0. 90 Ga. Recent geologic data support classical models restoring the Sveconorwegian belt directly to the east of the Grenville belt of Laurentia at 1.0 Ga. Fragments of Paleo-to Mesoproterozoic crust showing late Grenvillian-Sveconorwegian (1.00-0.92 Ga) magmatism and/or metamorphism are exposed in several tectonic levels in the Caledonides of Scandinavia, Svalbard and East Greenland, on both sides of the inferred Iapetus suture. Linking these fragments into a coherent late-Grenvillian tectonic model, however, require additional study.  相似文献   

12.
The Voisey’s Bay Ni-Cu-Co sulfide deposit is hosted in a 1.34 Ga mafic intrusion that is part of the Nain Plutonic Suite in Labrador, Canada.The Ni-Cu-Co sulfide mineralization is associated with magmatic breccias that are typically contained in weakly mineralized olivine gabbros, troctolites and ferrogabbros, but also occur as veins in adjacent paragneiss.The mineralization is associated with a dyke-like body which is termed the feeder dyke.This dyke connects the shallow differentiated Eastern Deeps chamber in the east to a deeper intrusion in the west termed the Western Deeps Intrusion.Where the conduit is connected to the Eastern Deeps Intrusion, the Eastern Deeps Deposit is developed at the entry line of the dyke along the steep north wall of the Eastern Deeps Intrusion.The Eastern Deeps Deposit is surrounded by a halo of moderately to weakly mineralized Variable-Textured Troctolite (VTT) that reaches a maximum thickness above the ENE-WSW axis of the Eastern Deeps Deposit. At depth to the west, the conduit is adjacent to the south side of the Western Deeps Intrusion, where the dyke and intrusion contain disseminated magmatic sulfide mineralization.The Reid Brook Zone plunges to the east within the dyke, and both the dyke and adjacent paragneiss are mineralized.The Ovoid Deposit comprises a bowl-shaped body of massive sulfide where the dyke widens near to the present-day surface.It is not clear whether this deposit was developed as a widened-zone within the conduit or at the entry point into a chamber that is now lost to erosion. The massive sulfides and breccia sulfides of the Eastern Deeps are petrologically and chemically different when compared to the disseminated sulfides in the VTT; there is a marked break in Ni tenor (Ni content in 100% sulfide, abbreviated to [Ni]100) and Ni/Co of sulfide between the two.The boundary of the sulfide types is often marked by strong sub-horizontal alignment of heavily digested and metamorphosed paragneiss fragments, development of barren olivine gabbro, and by a change from typically massive sulfides and breccias sulfides into more typical variable-textured troctolites with heavy to weak disseminated sulfide.Sulfides hosted in the feeder dyke tend to have low metal tenors ([Ni]100=2.5%-3.5%); sulfides in Eastern Deeps massive and breccia ores have intermediate Ni tenors ([Ni]100=3.5%-4%) and disseminated sulfides in overlying rocks have high Ni tenors ([Ni] 100=4%-8%) . Conduit-hosted mineralization and mineral zones in the paragneiss adjacent to the Reid Brook Deposit tend to have lower Ni tenor than the Ovoid and Eastern Deeps Deposits.The tenor of mineral hosted in the country rock gneisses tends to be the same as that developed in the conduit ; the injection of the sulfide into the country rocks likely occurred before formation of monosulfide solid solution.The Ovoid Deposit is characterized by coarse-grained loop-textured ores consisting of 10cm-2msized pyrrhotite crystals separated by chalcopyrite and pentlandite.A small lens of massive cubanite surrounded by more magnetite-rich sulfide assemblages represents what appears to be the product of in-situ sulfide fractionation. Detailed exploration in the area between the Reid Brook Zone and the Eastern Deeps has shown that these intrusions and ore deposits are connected by a branched dyke and chamber system in a major westeast fault zone.The Eastern Deeps chamber may be controlled by graben-like fault structures , and the marginal structures appear to have controlled dykes which connect the chambers at different levels in the crust.The geological relationships in the intrusion are consistent with emplacement of the silicate and sulfide laden magma from a deeper sub-chamber (possibly a deep eastward extension of the Western Deeps Intrusion where S-saturation was initially achieved) .The silicate and sulfide magmas were likely emplaced through this conduit into the Eastern Deeps intrusion as a number of different fragment laden pulses of sulfide-silicate melt that evolved with different R factors and in response to some variation in the degree of evolution of the parental magma.S isotope and S/Se data coupled with geological evidence point to a crustal source for the sulfur , and the site of equilibration of mafic magma and crustal S is placed at depth in a sulfidic Tasiuyak Gneiss. The structural control on emplacement of small intrusions with transported sulfide is a feature found in different nickel sulfide deposits around the world.Champagne glass-shaped openings in sub-vertical chonoliths are a common morphology for this deposit type (e.g.the Jinchuan , Huangshan , Huangshandong , Jingbulake , Limahe , Hong Qi Ling deposits in China , the Eagle deposits in the United States , and the Double Eagle deposit in Canada) .Some of the structures of the Midcontinent Rift of North America also host Ni-Cu-(PGE) deposits of this type (e.g.the Current Lake Complex in the Quetico Fault Zone in Ontario , Canada and the Tamarac mineralisation in the Great Lakes Structural Zone of the United States) .Other major nickel deposits associated with flat structures adjacent to major mantle-penetrating structures include the Noril’sk , Noril’sk II , Kharaelakh , NW Talnakh , and NE Talnakh Intrusions of the Noril’sk Region of Russia , the Kalatongke deposit in NW China , and Babel-Nebo in Western Australia.These deposits are all formed in mantle-penetrating structural conduits that link into the roots of large igneous provinces near the edges of old cratons.  相似文献   

13.
NS-trending dikes which contain dioritic enclaves widely occur in the Miaoergou pluton, West Junggar, Xinjiang. The dikes are composed of quartz diorite and quartz diorite porphyrite. LA-ICP-MS zircon U-Pb ages of the quartz diorite and diorite are 298.0±3.7 Ma and 299.4±2.5 Ma, respectively, corresponding to the end of the Late Carboniferous to beginning of the Early Permian. The dikes and enclaves have similar geochemical properties with island arc features. They are calc-alkaline, with moderate SiO2 (53.58% to 57.89%), high MgO (3.09% to 4.83%, Mg# values ranging from 44.69 to 54.12), TiO2 (1.17% to 1.66%), Cr (51.24×10-6 to 126.1×10-6), Ni (35.91×10-6 to 57.55×10-6) contents and K/Na ratios (0.35 to 0.70). Moreover, all samples are enriched in large-ion lithophile elements (LILEs: e.g. K, Rb, Ba and U) and light rare earth elements, but strongly depleted in high field strength elements (HFSEs: e.g. Nb, Ta and Ti), with insignificant Eu anomalies (δEu=0.67 to 1.08). In contrast, the dikes and enclaves in the Miaoergou pluton show geochemical signatures similar to those of the Cenozoic sanukitoids in Setouchi volcanic belt of SW Japan and the sanukitoids in the Hatu area, West Junggar. The source of the dikes might be the depleted mantle previously metasomatized by fluids released from subduction slabs. These sanukitic dikes may be generated by interaction of the mantle wedge with fluids derived from dehydration of the subducting oceanic slab, resulting in 2% to 5% partial melting of amphibole-spine peridotite. The identification of the sanukitic dikes in the Miaoergou pluton, together with previous studies, suggest that the southern West Junggar region was still dominated by subduction-related island arc setting at the beginning of the Early Permian, and multi-stage subduction-accretionary orogeny may account for the difference of subduction duration between the north and the south of West Junggar. © 2018, Science Press. All right reserved.  相似文献   

14.
On the basis of a comprehensive study on the petrology,trace elements and isotopic geochemistry of the Xiangshan amphibolites,we suggest that the protoliths of the amphibolites were basalts formed in an island-arc tectonic setting.The basaltic magma was derived from a slightly depleted mantle source with a small amount of crustal contamination.Assemblage of the rock-froming minerals indicates that these amphibolites underwent a low-grade metamorphism of amphibolite facies.According to the formation age(1113Ma) and subsequent metamophic age(726.6Ma) of the basalts aw well as the geological and gochemical features of these amphibolites,a tectonic model of Proterozoic oceanic island-arc setting is proposed for central Jiangxi.  相似文献   

15.
The development of Early Cretaceous mafic dikes in northern and southern Jiangxi allows an understanding of the geodynamic setting and characteristics of the mantle in southeast China in the Cretaceous. Geological and geochemical characteristics for the mafic dikes from the Wushan copper deposit and No. 640 uranium deposit are given in order to constrain the nature of source mantle, genesis and tectonic implications. According to the mineral composition,the mafic dikes in northern Jiangxi can be divided into spessartite and olive odinite types, which belong to slightly potassium-rich calc-alkaline lamprophyre characterized by enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), large depletion in high strength field elements (HSFE) and with negative Nb, Ta and Ti anomalies, as well as 87Sr/86Sr ratios varying from 0.7055 to 0.7095 and 143Nd/r44Nd ratios varying from 0.5119 to 0.5122.All features indicate that the magma responsible for the mafic dikes was derived mainly from metasomatic lithosphere mantle related to dehydration and/or upper crust melting during subduction. Differences in geochemical characteristics between the mafic dikes in northern Jiangxi and the Dajishan area, southern Jiangxi were also studied and they are attributed to differences in regional lithospheric mantle components and/or magma emplacement depth. Combining geological and geochemical characteristics with regional geological history, we argue that southeast China was dominated by an extensional tectonic setting in the Early Cretaceous, and the nature of the mantle source area was related to enrichment induced by asthenosphere upwelling and infiltration of upper crust-derived fluids responding to Pacific Plate subduction.  相似文献   

16.
A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Complex,East Antarctica,provides unequivocal evidence for extreme crustal metamorphism possibly associated with the collisional orogeny during Neoarchean.The reaction microstructures associated with sapphirine + quartz vary among the samples,probably suggesting different tectonic conditions during the metamorphic evolution.Sapphirine and quartz in TI sample were probably in equilibrium at the peak stage,but now separated by corona of Grt + Sil + Opx suggesting near isobaric cooling after the peak metamorphism,whereas the Spr + Qtz + Sil + Crd + Spl assemblage replaces garnet in PP sample suggesting post-peak decompression.The application of mineral equilibrium modeling in NCKFMASHTO system demonstrated that Spr + Qtz stability is lowered down to 930 ℃ due to small Fe3+ contents in the rocks (mole Fe2O3/(FeO + Fe2O3) =0.02).The TI sample yields a peak p-T range of 950-1100 ℃ and 7.5-11 kbar,followed by cooling toward a retrograde stage of 800-950 ℃ and 8-10 kbar,possibly along a counterclockwise p-T path.In contrast,the peak condition of the PP sample shows 1000-1050 ℃ and >12 kbar,which was followed by the formation ofSpr + Qtz corona around garnet at 930-970 ℃ and 6.7-7.7 kbar,suggesting decompression possibly along a clockwise p-T trajectory.Such contrasting p-T paths are consistent with a recent model on the structural framework of the Napier Complex that correlates the two areas to different crustal blocks.The different p-T paths obtained from the two localities might reflect the difference in the tectonic framework of these rocks within a complex Neoarchean subduction/collision belt.  相似文献   

17.
We report zircon U-Pb geochronology,geochemistry and Sr-Nd-Pb isotope data from mafic granulites and garnet amphibolites of the Wuhe Complex in the southeastern margin of the North China Craton (NCC).In combination with previous data,our results demonstrate that these rocks represent fragments of the ancient lower crust,and have features similar to those of the granulite basement in the northern margin of the NCC.A detailed evaluation of the Pb isotope data shows that Pb isotopes cannot effectively distinguish the role of the Yangtze Craton basement from that of the NCC basement with regard to the source and generation of magmas,at least for southeastern NCC.The age data suggest that the protoliths of the granulites or amphibolites in the Wuhe Complex were most likely generated in Neoarchean and that these rocks were subjected to Paleoproterozoic(1.8-1.9 Ga) high-pressure granulite facies metamorphism. This study also shows that the Precambrian metamorphic basement in the southeastern margin of the NCC might have formed in a tectonic setting characterized by a late Neoarchean active continental margin.  相似文献   

18.
Mesozoic magmatism is widespread in the eastern South China Block and has a close genetic relationship with intensive polymetallic mineralization. However, proper tectonic driver remains elusive to reconcile the broad intracontinental magmatic province. This study presents integrated zircon U-Pb dating, Hf isotopes and whole-rock geochemistry of the Xiwan dioritic porphyry in the NE Jiangxi ophiolitic mélange. Zircon U-Pb dating by SIMS and LA-ICP-MS methods yielded an emplacement age of ~160 Ma for the Xiwan diorite, confirming its inclusion into the Mesozoic magmatic province in SE China, instead of a component of the Neoproterozoic ophiolitic mélange genetically. The dioritic rocks have low Si02(58.08 wt%-59.15 wt%), and high Na_2 O(5.00 wt%-5.21 wt%) and MgO(4.60 wt%-5.24 wt%) contents with low TFeO/MgO ratios(1.02-1.09). They show an adakitic geochemical affinity but exhibit relatively low Sr/Y ratios(24.8-31.1) and high Y contents(14.6-18.3 ppm) compared to the Dexing adakitic porphyries. In addition, the Xiwan diorites have moderately evolved zircon Hf isotopic compositions(ε_(Hf)(t)=-6.1--0.1; T_(DM2)=1597-1219 Ma). These elemental and isotopic signatures suggest that the Xiwan diorite formed through partial melting of a remnant arc lower crust(i.e., early Neoproterozoic mafic arc-related rocks) in response to the underplating of coeval mafic magmas. In conjunction with the temporal-spatial distribution and complex geochemical characteristics of the Mesozoic magmatism, our case study attests to the feasibility of a flat-slab subduction model in developing the broad intracontinental magmatic province in SE China. The flat-slab delamination tends to trigger an asthenospheric upwelling and thus results in extensive partial melting of the overlying lithospheric mantle and lower crustal materials in an extensional setting during the Mesozoic.  相似文献   

19.
The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab.  相似文献   

20.
This paper presents the first release of an Informational System(IS)devoted to the systematic collection of all available data relating to Pliocene-Quaternary faults in southern East Siberia,their critical analysis and their seismotectonic parameterization.The final goal of this project is to form a new base for improving the assessment of seismic hazard and other natural processes associated with crustal deformation.The presented IS has been exploited to create a relational database of active and conditionally active faults in southern East Siberia(between 100°-114° E and 50°-57° N)whose central sector is characterized by the highly seismic Baikal rift zone.The information within the database for each fault segment is organized as distinct but intercorrelated sections(tables,texts and pictures,etc.)and can be easily visualized as HTML pages in offline browsing.The preliminary version of the database distributed free on disk already highlights the general fault pattern showing that the Holocene and historical activity is quite uniform and dominated by NE-SW and nearly E-W trending faults;the former with a prevailing dip-slip normal kinematics,while the latter structures are left-lateral strike-slip and oblique-slip(with different proportion of left-lateral and normal fault slip components).These faults are mainly concentrated along the borders of the rift basins and are the main sources of moderate-to-strong(M≥5.5)earthquakes on the southern sectors of East Siberia in recent times.As a whole,based on analyzing the diverse fault kinematics and their variable spatial distribution with respect to the overall pattern of the tectonic structures formed and/or activated during the late Pliocene-Quaternary,we conclude they were generated under a regional stress field mainly characterized by a relatively uniform NW-SE tension,but strongly influenced by the irregular hard boundary of the old Siberian craton.The obtained inferences are in an agreement with the existing models of the development of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号