首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Members of the Galaxy components are identified according to stellar ages, metallicities and galactic orbits. The local thin disk is found to have a maximum age of 11 billion years and a small abundance scatter partially controlled by the radial gradient of abundances. Metal-rich and old metal-poor stars belong to inner galactic populations and SMRs represent the ultimate star generation in the bulge. The thick disk forms a smooth transition between the halo and thin disk.  相似文献   

2.
I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new three-dimensional chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z= 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. Correspondingly, the inner halo is the oldest component, followed by the outer halo, the bar/bulge, the thick and the thin disk. The bulge in the model consists of at least two stellar subpopulations, an early collapse population and a population that formed later in the bar. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Our inzvestigation of the central region in NGC 4548, a bright Sb galaxy with a large-scale bar, using the Multipupil Field Spectrograph of the 6-m telescope revealed a chemically decoupled compact stellar nucleus with [Fe/H]=+0.6 and [Mg/Fe]=+0.1...+0.2 and with a mean stellar-population age of 5 Gyr. This nucleus, a probable circumnuclear disk coplanar with the global galactic disk, is embedded in the bulge whose stars are generally also young, T≈4 Gyr, although they are a factor of 2.5 more metal-poor. The bulge of NGC 4548 is triaxial and has a de Vaucouleurs surface-brightness profile; the unusual characteristics of its stellar population suggest the bulge formation or completion in the course of secular evolution in the triaxial potential of the global bar. The ionized gas within 3″ of the NGC 4548 nucleus rotates in a plane inclined to the principal symmetry plane of the galaxy, possibly, even in its polar plane, which may also result from the action of the large-scale bar.  相似文献   

4.
The chemical evolution of the Galaxy with a pulsating active nucleus is investigated. The surface densities of gas, stellar remnants, stars and chemical species such as helium and heavy elements inZ6 are calculated as functions of the position in the Galaxy and of the evolutional time of the Galaxy. According to this model, the entire luminosity of the galactic disk becomes almost constant at some 2×109 yr after the galactic formation, but the nuclear bulge, whose dimensions gradually diminishes, becomes more and more luminous with time. On the other hand, the abundance depletion of helium and heavy elements appears in the inner region of the disk after some 6×109 yr of the galactic formation. It also becomes clear that the activity for the nucleosynthesis in the nucleus is limited only in the early history of the Galaxy and has been reduced rapidly with time. Using this model, we can account for the observed phenomena such as the smooth dependence of the elemental abundance in the halo population on the distance from the galactic center, the high abundance of heavy elements in quasar spectra and etc.  相似文献   

5.
We present the results of a comprehensive spectrophotometric study of the central region in the regular lenticular galaxy NGC 4036 with two spectrographs of the 6-m telescope. The unresolved nucleus of NGC 4036 is shown to be chemically decoupled: [Mg/Fe]=+0.3 at the very center, whereas in the immediate vicinity of its nucleus, this ratio abruptly drops to +0.1 and does not change further along the radius. A study of isophotal morphology in combination with a kinematic analysis has proven that the rotation of stars at the NGC 4036 center is axisymmetric. However, the major-axis turn within R<5″ should be considered real. We interpret this turn as evidence for the existence of a tilted circumnucelar stellar disk with a radius of ~250 pc in NGC 4036. The NGC 4036 bulge may be triaxial, and the ionized gas at the galactic center is then concentrated toward the principal plane of the ellipsoidal potential.  相似文献   

6.
We studied and compared the radial profiles of globular clusters and of the stellar bulge component in three galaxies of the Fornax cluster observed with the WFPC2 of the Hubble Space Telescope ( HST ). The stars are more concentrated toward the galactic centres than globular clusters, in agreement with what has already been observed in many other galaxies: if the observed difference is the result of evolution of the globular cluster systems starting from initial profiles similar to those of the halo–bulge stellar components, a relevant fraction of their initial mass (74, 47 and 52 per cent for NGC 1379, 1399 and 1404, respectively) should have disappeared in the inner regions. This mass has probably contributed to the nuclear field population, local dynamics and high-energy phenomena in the primeval life of the galaxy. An indication in favour of the evolutionary interpretation of the difference between the globular cluster system and stellar bulge radial profiles is given by the positive correlation we found between the value of the mass lost from the globular cluster system and the central galactic black hole mass in the set of seven galaxies for which these data are available.  相似文献   

7.
Correlations between stellar kinematics and chemical abundances are fossil evidence for evolutionary connections between Galactic structural components. Extensive stellar surveys show that the only tolerably clear distinction between galactic components appears in the distributions of specific angular momentum. Here the stellar metal-poor halo and the metal-rich bulge are indistinguishable from each other, as are the thick disk and the old disk. Each pair is very distinct from the other. This leads to an evolutionary model in which the metal-poor stellar halo evolves into the inner bulge, while the thick disk is a precursor to the thin disk. These evolutionary sequences are distinct. The galaxy is made of two discrete 'populations', one of low and one of high angular momentum. Some (minor?) complexity is added to this picture by the debris of late and continuing mergers, which will be especially important in the outer stellar halo.  相似文献   

8.
We have investigated the gas and stellar kinematics and the stellar population properties at the center of the early-type galaxy NGC 4245 with a large-scale bar by the method of two-dimensional spectroscopy. The galaxy has been found to possess a pronounced chemically decoupled compact stellar nucleus, which is at least a factor of 2.5 richer in metals than the stellar population of the bulge, and a ring of young stars with a radius of 300 pc. Star formation goes on in the ring even now; its location corresponds to the inner Lindblad resonance of the large-scale bar. According to Hubble Space Telescope data, the mean stellar age in the chemically decoupled nucleus is significantly younger than that within 0″.25 of the center. It may be concluded that we take the former ultracompact star formation ring with a radius of no more than 100 pc located at the inner Lindblad resonance of the now disappeared nuclear bar as the chemically decoupled nucleus. On the whole, the picture of star formation at the center of this gas-poor galaxy is consistent with theoretical predictions of the consequences of the secular evolution of a stellar-gaseous disk under the action of a bar or bars.  相似文献   

9.
Numerical simulations of two-component (stars + gas) self-gravitating galactic disks show that the interstellar gas can significantly affect the dynamical evolution of the disk even if its mass fraction (relative to the total galaxy mass) is as low as several percent. Aided by efficient energy dissipation, the gas becomes gravitationally unstable onlocal scale and forms massive clumps. Gravitational scattering of stars by these clumps leads to suppression of bar instability usually seen in heavy stellar disks. In this case, gas inflow towards the galactic center is driven by dynamical friction which gas clumps suffer instead of bar forcing.  相似文献   

10.
I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z = 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. The feedback of stars leads to turbulent motions and large-scale flows in the ISM. As one result the galactic disk is significantly enriched by chemical elements synthesized in bulge stars.  相似文献   

11.
The formation of a disk galaxy within a slowly growing dark halo is simulated with a new chemo-dynamical model. The model describes the evolution of the stellar populations, the multi-phase ISM and all important interaction. I find, that the galaxy forms radially from inside-out and vertically from top-to-bottom. The derived stellar age distributions show that the inner halo is the oldest component, followed by the outer halo, the triaxial bulge, the halo-disk transition region and the disk. Despite the still idealized model, the final galaxy resembles present-day disk galaxies in many aspects. In particular, the stellar metallicity distribution in the halo of the model resembles the one of M31. The bulge in the model shows, at least two stellar subpopulations, an early collapse population and a population that formed later out of accreted disk mass. In the stellar metallicity distribution of the disk, I find a pronounced ‘G-dwarf problem’ which is the result of a pre-enrichment of the disk ISM with metal-rich gas from the bulge. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
Based on archival Hubble Space Telescope images, we have performed stellar photometry for eight edge-on spiral and irregular galaxies. We have identified stars of three ages in the derived Hertzsprung-Russell diagrams and constructed their number density distribution perpendicularly to the plane of the galactic disk. The sizes of the stellar subsystems of young (up to 100 Myr), middle (0.1–1.0 Gyr), and old (up to 12 Gyr) ages have been determined. A relationship between the age of a subsystem and its size has been found in all of the galaxies studied. Our results can be explained by the model of galactic thick-disk formation through thin-disk expansion. In this case, the middle-age stellar subsystem is a transitional stage from the thin disk to the thick one.  相似文献   

13.
Based on archival Hubble Space Telescope images, we have performed stellar photometry for eight edge-on spiral and irregular galaxies. We have identified stars with ages of 20, 50, 80, 160, and 500 Myr in the derived Hertzsprung-Russell diagrams and constructed their number density distributions perpendicularly to the plane of the galactic disk. We have determined the sizes of the stellar subsystems and constructed the size-age diagrams for the stars constituting these subsystems. The stellar subsystems have been found to expand in all of the investigated galaxies within the range of ages studied (from 20 to 500 Myr). The expansion velocity of the subsystems decreases as one recedes from the galactic plane. The subsystems with ages of 1.5 and 6 Gyr also exhibit an increase in their sizes with age. The sizes of these subsystems approach those of the thick disk consisting of red giants. Our results confirm the model of thick-disk formation in irregular and low-mass spiral galaxies through thin-disk expansion.  相似文献   

14.
We consider disk and spherical subsystems of stars with nearly radial orbits under conditions when the well-known radial orbit instability is not possible. This requires that the precession of stellar orbits be retrograde, i.e., in the direction opposite to the orbital rotation of stars. We show that an instability that is an analogue of the loss-cone instability known in plasma physics can then develop in the presence of a “loss cone” in the angular momentum distribution of stars, which ensures a deficit or even absence of stars with low angular momenta. Examples of systems with a loss cone are the centers of galaxies or star clusters with massive black holes. The instability can produce a flux of stars onto the galactic center, i.e., it can serve as a mechanism of fueling the nuclear activity of galaxies. Mathematically, the problem is reduced to analyzing simple characteristic equations that describe small perturbations in a disk and a sphere of radially highly elongated stellar orbits. In turn, these characteristics equations are derived through a number of successive simplifications of the general linearized Vlasov equations (i.e., the system that includes the collisionless Boltzmann kinetic equation and the Poisson equation) in action—angle variables.  相似文献   

15.
I examine the effectiveness of Kozai oscillations in the centres of galaxies and in particular the Galactic Centre (GC) using standard techniques from celestial mechanics. In particular, I study the effects of a stellar bulge potential and general relativity on Kozai oscillations, which are induced by stellar discs. Löckmann et al. recently suggested that Kozai oscillations induced by the two young massive stellar discs in the GC drive the orbits of the young stars to large eccentricity  ( e ≈ 1)  . If some of these young eccentric stars are in binaries, they would be disrupted near pericentre, leaving one star in a tight orbit around the central supermassive black hole and producing the S-star population. I find that the spherical stellar bulge suppresses Kozai oscillations, when its enclosed mass inside a test body is of the order of the mass in the stellar disc(s). Since the stellar bulge in the GC is much larger than the stellar discs, Kozai oscillations due to the stellar discs are likely suppressed. Whether Kozai oscillations are induced from other non-spherical components to the potential (e.g. a flattened stellar bulge) is yet to be determined.  相似文献   

16.
G01 New evidence for a connection between massive black holes and ULX G02 Long‐Term Evolution of Massive Black Hole Binaries G03 NBODY Meets Stellar Population Synthesis G04 N‐body modelling of real globular star clusters G05 Fokker‐Planck rotating models of globular clusters with black hole G06 Observational Manifestation of chaos in spiral galaxies: quantitative analysis and qualitative explanation G07 GRAPE Clusters: Beyond the Million‐Body Problem G08 Orbital decay of star clusters and Massive Black Holes in cuspy galactic nuclei G09 An Edge‐on Disk Galaxy Catalog G10 Complexes of open clusters in the Solar neighborhood G11 Search for and investigation of new stellar clusters using the data from huge stellar catalogues G12 Computing 2D images of 3D galactic disk models G13 Outer Pseudoring in the Galaxy G14 Where are tidal‐dwarf galaxies? G15 Ultra compact dwarf galaxies in nearby clusters G16 Impact of an Accretion Disk on the Structure of a stellar cluster in active galactic nuclei G17 Order and Chaos in the edge‐on profiles of disk galaxies G18 On the stability of OB‐star configurations in the Orion Nebula cluster G19 Older stars captured in young star clusters by cloud collapse G20 General features of the population of open clusters within 1 kpc from the Sun G21 Unstable modes in thin stellar disks G22 From Newton to Einstein – Dynamics of N‐body systems G23 On the relation between the maximum stellar mass and the star cluster mass  相似文献   

17.
The four main scientific objectives of PRIMA – the Phase-Referenced Imaging and Micro-arc second Astrometry facility for the VLTI – will be described:– extra-solar system characterization with astrometry, to detect planets and evaluate their mass, and imaging of the dust accretion disk,– galactic center study with astrometry(dynamics of the bulge stars) and imaging at 10μm (piercing the gas and dust clouds surrounding the galactic center),– observations of AGNs and other extra-galactic objects, too faint to be observed without PRIMA, for which partial imaging is needed to constrain their structuremodels,– micro-gravitational lensing event resolution (imaging and astrometry of their photo-center) in the Galactic Bulge and Magellanic Clouds, helping to determine directly the lens mass and distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
旋涡星系的颜色梯度反映了其星族构成沿径向的分布,包含了星系恒星形成历史的信息.因此,对旋涡星系颜色梯度的研究有助于理解星系的形成和演化过程.大部分旋涡星系存在负的颜色梯度,其主要原因是旋涡星系存在星族梯度.颜色梯度与星系的面亮度之间存在内禀的相关,表明质量面密度在星系的形成和演化过程中具有重要作用.  相似文献   

19.
Early-Type Stars     
Away from the young disk, several classes of early type stars are found. They include (i) the old, metal-poor blue horizontal branch stars of the halo and the metal-poor tail of the thick disk; (ii) metal-rich young A stars in a rapidly rotating subsystem but with a much higher velocity dispersion than the A stars of the young disk, and (iii) a newly discovered class of metal-poor young main sequence A stars in a subsystem of intermediate galactic rotation (Vrot ≈ 120 km s−1). The existence and kinematics of these various classes of early type stars provide insight into the formation of the metal-poor stellar halo of the Galaxy and into the continuing accretion events suffered by our Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Ultraviolet spectra of population I WR stars obtained from IUE archive are used to determine fundamental stellar parameters. Terminal velocities for 85 galactic and LMC Wolf-Rayet stars were obtained by means of the empirical relation between spectral quantities easily measured in low resolution and high-resolution terminal velocity measurements. Temperatures and so-called transformed radii were derived based on available contour plots of spectral characteristics for a grid of NLTE models. The effect of the reddening law on stellar far ultraviolet continua is emphasized and the revised extinction curve towards WR stars is used for dereddening. For the sample of stars attributed to open clusters or associations we construct the stellar distance scale and adopt it for the other WR stars. The remaining fundamental parameters are derived and HR diagram for population I WR stars is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号