首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotites from plutonic recks of the central Sierra Nevada andInyo Mountains, California, have been examined and characterizedby powder X-ray diffraction and optical and chemical methods. Compositions of the biotites define a trend in the compositionaltriangle Fe+3 Fe+2Mg. When related to the experimentally studiedternary system KFe3+3AlSisO12H-1-KFe3+2 AlSi3O10(OH)2-KMg3AlSi3O10(OH)2and coupled with the estimated positions of biotite solid solutionsfor different oxygen buffers, the trend suggests that oxygenfugacities in magmas during biotite crystallization were slightlyhigher than those defined by the Ni-NiO buffer. The compositionaldata also suggest that magmas were ‘buffered’ withrespect to oxygen by oxides existing within the magmas themselves. Correlation between the Fe/(Fe+Mg) ratio, an inferred temperatureindicator, and other elements is generally poor, which suggeststhat factors other than temperature at the time of crystallizationexerted an important influence on compositions.  相似文献   

2.
Twenty samples of hornblendes from rocks of 14 plutonic unitsin the central Sierra Nevada and Inyo Mountains, California,have been studied in detail. Optical, density, single-crystaland powder X-ray diffraction, and major and minor element chemicaldata are reported. The compositions of the hornblendes show only limited correlationwith the chemistry of the rocks in which they occurred. Hornblendesfrom granitic rocks of the eastern Sierra Nevada and Inyo Mountainshave a wide range of tetrahedral aluminum content which is oftenas low as three-quarters of an atom per formula unit, whereashornblendes from younger granitic rocks elsewhere in the SierraNevada batholith contain more than one atom of tetrahedral aluminumper formula unit. Because an increase of aluminum in tetrahedralco-ordination is considered indicative of higher temperaturesof crystallization, the observed differences in the hornblendessuggest that older plutonic rocks of the batholith may havebeen metamorphosed regionally or may have been affected by widespreadhydrothermal action prior to consolidation of later graniticrocks.  相似文献   

3.
DAWSON  J. B. 《Journal of Petrology》2002,43(9):1749-1777
A group of chrome-spinel peridotite upper-mantle xenoliths fromthe Lashaine volcano, northern Tanzania, differs from otherxenoliths at this locality in containing glassy melt pockets.Modal, mineral chemical and isotopic evidence indicates that,before the melting that was coincident with the xenolith entrainmentand eruption in the Pleistocene, the sub-Tanzanian mantle lithospherehad a complex history. A major element depletion at  相似文献   

4.
The volcanoes of the South Sandwich island arc follow threedistinct series: low-K tholeiitic (followed by Zavodovski, Candlemas,Vindication, Montagu and Bristol), tholeiitic (followed by Visokoi,Saunders and Bellinghausen) and calcalkaline (followed by Leskov,Freehand and part of Cook and Thule). Flux calculations indicatethat the percentage contribution of the subduction componentto the mantle source of all three series varies from undetectable(e.g. Zr) through small (e.g. Nd=20%) and moderate (e.g. La,Ce, Sr=50–80%) to dominant (e.g. Pb, K, Ba, Rb, Cs >90%)with little change along the arc. Isotope systematics (Pb, Nd,Sr) show that this subduction component obtains a greater contributionfrom altered oceanic crust than from pelagic sediment. Elementsfor which the subduction contribution is small show that themantle is already depleted relative to N-MORB mantle (equivalentto loss of an 2•5% melt fraction) before melting beneaththe arc. After addition of the subduction component, dynamicmelting of this depleted mantle then causes the variations inK that distinguish the three series. The estimated degree ofpartial melting (20%) is slightly greater than that beneathocean ridges, though geothermometry suggests that the primarymagma temperature (1225C) is similar to that of primary MORB.About half of the melting may be attributed to volatile addition,and half to decompression. Dynamic melting involving three-dimensional,two-phase flow may be needed to explain fully the inter-islandvariations. KEY WORDS: geochemistry; petrology; fluxes; melting; subduction *Corresponding author  相似文献   

5.
根据吉林汪清(WQ)中新世和辉南(HN)上新世玄武岩捕虏体橄榄岩透辉石的激光探针(LAM-ICPMS)微量元素分析结果,分析了华北北缘与兴蒙造山带结合部位陆下岩石圈地幔所经历的部分熔融作用和地幔交代作用.新生代时无论是靠近华北地块一侧的辉南,还是靠近兴蒙造山带一侧的汪清陆下岩石圈除少量难熔地幔残留外,主体上均表现为显生宙‘大洋型’的地幔特征,即经历了8%以下的部分熔融作用.这些地幔又记录着复杂的地幔交代作用过程,交代介质类似于含水的、含碳酸岩质的硅酸岩熔体.这样的地幔特征与中国东部其他地区新生代时的主体岩石圈相似,也有少量古老地幔残余,由此进一步说明中国东部中、新生代岩石圈减薄作用经历了软流圈地幔对古老岩石圈的侵蚀和最终的置换过程.  相似文献   

6.
Two types of mafic enclaves occur in the Dinkey Creek pluton:ubiquitous microgranular enclaves, and rare gabbroic enclaves.Common petrographic features of the microgranular enclaves are:(1) fine grain-size, (2) abundant acicular apatite, and (3)plagioclase zoned from bytownitic cores to andesine-labradoriterims, with sharp boundaries between these main zones. Subordinateoscillatory variations are commonly superimposed on both coresand rims. It has been found by secondary ion mass spectrometrythat the rims are identical in major and trace element compositionto plagioclase in the tonalite, which suggests crystallizationfrom the same or similar magmas. The gabbroic enclaves are composedpredominantly of hornblende (50–85%) and appear to bemagmatic segregations. The microgranular enclaves and host rocks display two convergingtrends on silica variation diagrams for Fe2O3, TiO2, Al2O3,Zn, and Zr. The dominant trend is defined by small microgranularenclaves, by samples from a large (20 m?30 m) microgranularenclave, and by the Dinkey Creek tonalites and granodiorites.The subordinate trend covers tholeiltic dikes and tonalitich and converges with the Dinkey Creek host rocks at 61 wt.%SiO2 Alkali and alkaline earth elements exhibit greater variabilitythan the above constituents and appear to be either enrichedor depleted as required for equilibrium with the host rocks.Low CaO and Sr concentrations in small enclaves (<30 cm)apparently reflect a lower modal abundance of calcic plagioclaseand more sericitization of this feldspar as compared with theplagioclase of the large microgranular enclave. The large enclaveis also richer in MgO than the small enclaves. With the exceptionof the alkali elements, the major element compositions of themicrogranular enclaves approach high-Al basaltic to andesiticcom positions. In one analyzed microgranular enclave, low La/Cerelative to chondrites and more abundant HREE than in othermicrogranular samples suggest that it may also contain minorcumulus hornblende. The petrographic and whole-rock geochemical relations, and theplagioclase compositions in the microgranular enclaves and theirhost rocks, indicate that the microgranular enclaves representmixtures of quenched basalts and Dinkey Creek tonalites. Itappears that dikes of high-alumina basalt were intruded intothe lower, tonalitic portions of the Dinkey Creek pluton, wherethey were partially quenched along an interface with overlyingtonalitic magma. Large portions of residual liquid in the partiallyquenched basalts permitted mixing with the overlying magma toform a hybrid zone. This zone was then disaggregated, yieldingthe enclaves, and they were dispersed throughout the upper partof the Dinkey Creek magma chamber. Subsequent crystallizationof tonalitic melt within the enclaves produced the zoned plagioclaseand re-equilibrated hornblende and biotite in the enclaves tothe Dinkey Creek magmatic conditions. Scouring disrupted hornblende-richmagmatic segregations and produced the gabbroic enclaves.  相似文献   

7.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

8.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US.  相似文献   

9.
陈伊翔 《地球科学》2019,44(12):4057-4063
前人对深俯冲板片释放熔/流体交代地幔楔形成弧岩浆源区的过程和机制已得到充分认识,然而对地幔楔岩石能否脱水交代深俯冲地壳并不清楚.在对欧洲西阿尔卑斯造山带Dora-Maira地体白片岩的地球化学研究中,首次发现地幔楔交代岩能够脱水反向交代深俯冲地壳岩石,从而极大影响俯冲地壳的地球化学组成.结合白片岩和围岩的全岩地球化学特征以及锆石学结果,查明了白片岩的原岩为S型花岗岩,澄清了关于Dora-Maira白片岩原岩属性的长期争议.在此基础上,发现白片岩中变质锆石相对残留岩浆锆石δ18O值显著降低,指示原岩形成后受到低δ18O变质流体的交代作用.白片岩具有高温岩石中最高的δ26Mg值达0.75‰,显著高于围岩变花岗岩,指示交代流体具有重Mg同位素组成.基于地球主要岩石储库的Mg同位素组成,推测交代流体来自俯冲隧道中富滑石地幔楔蛇纹岩在弧下深度的脱水分解,而这些地幔楔蛇纹岩是新特提斯洋壳在弧前深度变质脱水产生的流体与地幔楔浅部橄榄岩反应形成.这些结果不仅提供了利用Mg-O同位素示踪俯冲隧道中流体来源的新思路,也提供了地幔楔蛇纹岩来源流体反向交代深俯冲地壳岩石的首个典型实例.这种反向交代不仅极大改变了深俯冲地壳的地球化学组成,而且对弧岩浆岩重Mg同位素成因具有重要意义.   相似文献   

10.
The late Miocene Cordillera Blanca Batholith lies directly overthick (50 km) crust, inboard of the older Cretaceous CoastalBatholith. Its peraluminous ‘S’ type mineralogyand its position suggest recycling of continental crust, whichis commonly thought to be an increasingly important componentin magmas inboard of continental margins. However, the peraluminous,apparent ‘S’ type character of the batholith isan artefact of deformation and uplift along a major crustallineament. The batholith is a metaluminous ‘I’ typeand the dominant high-silica rocks (>70%) are Na rich withmany of the characteristics of subducted oceanic slab melts.However, the position of the batholith and age of the oceaniccrust at the trench during the Miocene preclude slab melting.Instead, partial melting of newly underplated Miocene crustis proposed. In this dynamic model newly underplated basalticmaterial is melted to produce high-Na, low HREE, high-Al ‘trondhjemitic’type melts with residues of garnet, clinopyroxene and amphibole.Such Na-rich magmas are characteristic of thick Andean crust;they are significantly different from typical cole-alkaline,tonalite-grano-diorite magmas, and their presence along thespine of the Andes provokes questions about models of trondhjemitegenesis by melting of subducted oceanic crust, as well as anygeneralized, circum-Pacific model involving consistent isotopicor chemical changes inboard from the trench. KEY WORDS: batholith; modified ‘I’ type granite; Na-rich magma; thick crust * Corresponding author.  相似文献   

11.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

12.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

13.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

14.
The calc-alkaline association of the Hercynian Sardinia-CorsicaBatholith consists of multiple coalescent granitoid plutonsand minor gabbroic complexes. Isotopic and trace element dataare presented for selected gabbros and I-type granitoids representativeof the parental mantle- and crust-derived magmas, respectively.The gabbros belong to normal calc-alkaline suites and have markedrelative enrichments in Rb, Ba, K and Pb in primitive mantle-normalizedtrace element diagrams. The granitoids belong to high-K calc-alkalinesuites and have fairly uniform trace element compositions resemblingvolcanic arc granitoids (VAG). A significant overlap in Sr andNd isotope compositions is observed between gabbros and granitoids. Geochemical and isotopic data provide evidence for the originof the gabbros from mantle sources enriched in incompatibletrace elements through recycling of sediments via subductionzones, whereas the granitoids were derived from crustal sourcescomposed mainly of igneous protoliths with relatively homogeneouscomposition. Sr and Nd isotope compositions of gabbros and granitoidsare consistent with both the mantle enrichment process and theformation of the igneous crustal sources occurring at 450 Ma,during the earlier calc-alkaline igneous activity. The connection between Hercynian and Ordovician igneous activityhas important and new implications for the Palaeozoic evolutionof the Sardinia and Corsica lithosphere, and permits the Hercynianorogeny to be placed in a wider geodynamic setting, consistingof three main phases. The Ordovician precollisional phase wascharacterized by a N-NE-dipping subduction of an oceanic plateunder a continental plate with emplacement of acid and subordinatebasic-intermediate volcanic and intrusive rocks. The subcontinentalmantle underneath Sardinia and Corsica experienced enrichmentin incompatible trace elements through recycling of sediments.Major crustal accretion also occurred with underplating of basalticmagmas. The Devonian collisional phase was characterized bythe collision of two continental plates after the total consumptionof the oceanic plate. Crustal thickening processes took placetogether with regional metamorphic events that recorded a clockwiseP-T-t path. The Carboniferous post-collisional phase was characterizedby isostatic and thermal readjustments following crustal thickeningthat caused extensive partial melting. Large quantities of I-typegranitoids and subordinate gabbroic complexes were emplacedin the middle-upper crust and formed the mainframe of the Sardinia-CorsicaBatholith. This geodynamic model is consistent with the Palaeozoic evolutionof other sectors of Western Europe suggested on the basis ofgeological, geochronological and palaeomagnetic data. The palaeomagneticrestoration of the Late Palaeozoic position of Sardinia andCorsica close to Southern France suggests that Sardinia andCorsica could have been portions of the southern edge of theArmorican plate that, during Siluro-Devonian, collided withthe Ibero-Aquitanian plate after the total consumption of theLate Cambro-Ordovician South Armorican and/or Massif CentralOcean. KEY WORDS: crustal growth; Hercynian orogeny; mantle enrichment; radiogenic isotopes; Sardinia-Corsica Batholith *Corresponding author. Present address Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Piazzale Delle Cascine i6, 50144 Firenze, Italy  相似文献   

15.
A time-series of tree-ringwidth indices for alpine timberline foxtail pine (Pinus balfouriana) from the Sierra Nevada of California shows a growth response to summer, late fall, and early winter temperatures that is the inverse of that resulting in the expansion of alpine glaciers. These are correlated with lichen-dated moraines and avalanche deposits that accumulated during subsequent decades. Minima in the ringwidth record, reflecting marked temperature declines occurred at 810, 1470, 1610, 1700 and 1810. Cold periods of lesser extent are also indicated between 1190 to 1400 and suggest that the initial pulses of the Sierran Matthes advances may have begun as early as 1190, or 150 yr earlier than previously dated. The Matthes advances were preceded by a period of pronounced warmth from 900 to 1190 during which timberline rose 10 m to its present elevation. A warm period is also indicated between 1500 and 1580. Recent work extending the tree-ring chronology to 3031 yr B.P. and radiocarbon dating of weathered samples to 6300 yr B.P. suggests that the chronology may ultimately be applicable to the dating of earlier Sierran glacier advances.  相似文献   

16.
《Quaternary Science Reviews》1999,18(10-11):1151-1171
We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes—one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ∼90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.  相似文献   

17.
The Palaeocene magnesian transitional basalts of the Main LavaSeries (SMLS) of Skye, NW Scotland, have concentration rangesof K, Ti, P, Rb, Sr, Ba, Nb, Ta, Zr, Hf, Th and light REE varyingby a factor of up to two at a given value of (FeO + Fe2O3)/(FeO+ Fe2O3 + MgO). Their chondrite-normalized REE patterns varywidely in slope and cuvature, with (Ce/Yb)N=2.2–4.7. Theabundances of Ti, P, Zr, Hf, Eu, Gd and Tb correlate negativelywith Si-saturation and are thought to be primary, reflectingvariable localized partial melting (5 per cent) for each magmabatch at about 60 km depth of a spinel-lherzolite upper mantle,leaving a lherzolitic residuum. Y and the heavy REE vary littlewith Si-saturation, due to their partial retention in residualmantle diopside. The large abundance ranges of Rb, Sr, Ba, Nb,Th, La, Ce and Nd in the SMLS basalts, uncorrelated with Si-saturation,may reflect local upper-mantle variability in the concentrationsof the ultra-incompatible elements beneath Skye, caused by thepre-Palaeocene extraction of small quantities of alkalic, incompatible-element-richmagma, such as formed the Permian lamprophyre dykes of westernScotland. The trace element data confirm major-element, least-squaresmodels, which show that fractional crystallization of SMLS magnesianbasalt to less-magnesian basalt residua involved the separationof 10 per cent olivine and 4 per cent plagioclase, whilst thefractionation of SMLS less-magnesian basalt to hawaiite occurredat about 35 km depth by precipitation of 8 per cent olivine,15 per cent plagioclase and 21 per cent aluminous sub-calcicaugite. The variation of Nb and Ta abundances in hawaiites,mugearites and low-Fe intermediate lavas suggests that theseelements partitioned strongly into liquidus titanomagnetitemicrophenocrysts. Zircon fractionation occurred during the finalstages of evolution of benmoreites and trachytes, the latterrepresenting the residuum of at least 90 per cent fractionalcrystallization of SMLS basalt magma. High-Ca, low-alkali olivine tholeiites of the Preshal Mhor magmatype occur near the top of the present lava field erosionalremnant and predominate in the dyke swarm transecting it. Theyhave low incompatible trace-element abundances and REE patternswith (Ce/Yb)N 0.6, similar to those of many mid-ocean ridgebasalts. Models attempting to explain the genesis and relationsof the contrasting SMLS and Preshal Mhor basalts by postulatingseparate mantle sources, arranged in plumes, blobs or layers,fail to account satisfactorily for: (1) the constant incompatible-elementratio ranges of all Skye basalt lavas, (2) the partial interstratificationof SMLS and Preshal Mhor basalts and (3) the appearance of PreshalMhor magmas at the climax of crustal extension in the dyke swarm.The contrasting REE patterns of SMLS transitional basalts andPreshal Mhor tholeiites, and the high Ca/Al, Ca/Na and Ca/Tiof the latter, can be explained if they were produced by furtherlimited partial fusion of the lherzolitic residuum (with a trappedmelt fraction) from SMLS genesis, leaving a final harzburgiticresiduum. The petrogenesis of the Skye lavas provides a localshort-timespan analogue of worldwide processes involved in thegeneration of mid-ocean ridge basalts.  相似文献   

18.
A record of > 100 million years of fluid flow, alteration,and metamorphism in the evolving Sierra Nevada magmatic areis preserved in metavolcanic rocks of the Ritter Range pendantand surrounding granitoids. The metavolcanic rocks consist of:(1) a lower section of mostly marine volcaniclastic rocks, lavas,and intercalated carbonate rocks that is Triassic to Jurassicin age, and (2) an upper section comprising a subaerial caldera-fillcomplex of mid-Cretaceous age. Late Cretaceous high-temperaturecontact metamorphism (2 kbar, >450–500C) occurredafter renewed normal faulting along the caldera-bounding faultsystem juxtaposed the two sections. The style and degree of alteration and 18O values differ amongthe rocks of the upper and lower sections and the granitoids.Rocks of the lower section show pervasive lithologically controlledalkali alteration, local Mn and Mg enrichment, and oxidation.Some ash flow tuffs now contain up to 10% K2O by weight. Therocks of the upper section show lesser extents of alkali alteration.Granitoids that cut both sections are generally unaltered. Mostmetavolcanic rocks of the lower section have high 18O values(+ 11 to + 16%; whole rock and quartz phenocrysts); however,lower-section rocks within the caldera-bounding fault systemhave low 18O values of + 4 to +7. The metavolcanic rocks ofthe upper section also have low 18O values of + 2 to + 7. Granitoidshave 18O values of + 7 to + 10, typical of unaltered Sierrangranitoids. The lower section contains discontinuous veins ofhigh-temperature (450–500C) calc-silicate minerals. Theseveins are typically <5 m long, do not cross intrusive contacts,and postdate the pervasive alkali alteration. Late veins aretypically > 10 m long, formed at temperatures of less than450–500C, and cross intrusive contacts. Veins have similar18O values to those of the local host rocks. The nature of the alteration and the high oxygen isotopic valuesof the rocks of the lower section indicate that these rocksinteracted extensively with seawater at temperatures <300C,probably in superposed marine hydrothermal systems associatedwith coeval volcanic centers. Metavolcanic rocks of the uppersection evidently interacted with meteorie waters, probablyin a hydrothermal system associated with the Cretaceous caldera;rocks of the lower section that were adjacent to the calderawere also affected by this alteration. The preservation of thesignatures of these earlier events, the nature of the earlyveins, and results from numerical models of hydrothermal flowthat include fluid production indicate that during progradecontact metamorphism, the rocks of the pendant primarily interactedwith locally derived fluids. Fluid flow was predominantly upwardand away from intrusive contacts and down-temperature. Permeabilitiesare estimated to have been between 0•1 and 1µD, whichis that necessary for maintenance of lithostatic fluid pressures.In hydrothermal models with such permeabilities, large-scalecirculation of meteoric fluids develops after prograde metamorphismceases. The nature of the late veins in the Ritter Range pendantsuggests that such a flow pattern evolved only after the pendantand granitoids had cooled below 450–500C. The long-termhistory of alteration documented in the Ritter Range pendantis probably typical of wall rocks in most batholiths *Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   

19.
New KAr ages for a basalt flow interbedded with Tahoe and Tioga tills in Sawmill Canyon, southeastern Sierra Nevada, slightly refine previously published ages for the flow and provide an estimate of 53,000 ± 44,000 yr for the Tahoe-Tioga interglaciation.  相似文献   

20.
The focus of this study is a suite of garnet-bearing mantlexenoliths from Oahu, Hawaii. Clinopyroxene, olivine, and garnetconstitute the bulk of the xenoliths, and orthopyroxene is presentin small amounts. Clinopyroxene has exsolved orthopyroxene,spinel, and garnet. Many xenoliths also contain spinel-coredgarnets. Olivine, clinopyroxene, and garnet are in major elementchemical equilibrium with each other; large, discrete orthopyroxenedoes not appear to be in major-element chemical equilibriumwith the other minerals. Multiple compositions of orthopyroxeneoccur in individual xenoliths. The new data do not support theexisting hypothesis that all the xenoliths formed at 1 6–22GPa, and that the spinel-cored garnets formed as a consequenceof almost isobaric subsolidus cooling of a spinel-bearing assemblage.The lack of olivine or pyroxenes in the spinel–garnetreaction zones and the embayed outline of spinel grains insidegarnet suggest that the spinel-cored garnets grew in the presenceof a melt. The origin of these xenoliths is interpreted on thebasis of liquidus phase relations in the tholeiitic and slightlysilica-poor portion of the CaO–MgO–Al2O3–SiO2(CMAS) system at pressures from 30 to 50 GPa. The phase relationssuggest crystallization from slightly silica-poor melts (ortransitional basaltic melts) in the depth range 110–150km beneath Oahu. This depth estimate puts the formation of thesexenoliths in the asthenosphere. On the basis of this study itis proposed that the pyroxenite xenoliths are high-pressurecumulates related to polybaric magma fractionation in the asthenosphere,thus making Oahu the only locality among the oceanic regionswhere such deep magmatic fractional crystallization processeshave been recognized. KEY WORDS: xenolith; asthenosphere; basalt; CMAS; cumulate; oceanic lithosphere; experimental petrology; mantle; geothermobarometry; magma chamber  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号