首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strontium isotope stratigraphy was performed on oyster shells from the Late Jurassic of the Lusitanian Basin (central Portugal). This represents the first approach to obtain numerical ages for these strata. The new chronostratigraphic data provide a more precise age determination of several units. After a basin-wide hiatus sedimentation in the Late Jurassic is proven in the Cabo Mondego and Cabaços formations to resume as early as the Middle Oxfordian. The Alcobaça formation can be placed in the latest Late Oxfordian to Late Kimmeridgian, while data from the upper part of the Abadia Formation indicate an Early to Late Kimmeridgian age. The Farta Pao formation ranges from the latest Kimmeridgian to the latest Tithonian. The largely synchronous Sobral, Arranhó I, and Arranhó II members are overlain by the late Early to Late Tithonian Freixial Member. The brief, local carbonate incursion of the Arranhó I member marks the Kimmeridgian–Tithonian boundary. Oysters are shown once more to be suitable for strontium isotope studies. Their calcitic shells are often unaffected by diagenesis. In particular for marginal marine Jurassic and Cretaceous strata, where belemnites are usually absent, oysters may serve as a valuable tool for isotope stratigraphy.  相似文献   

2.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

3.
Abstract

The Powell Basin is one of the few present-day examples of a small isolated ocean basin largely surrounded by blocks of continental crust. The continental blocks in this basin result from the fragmentation of the northern Antarctic Peninsula. This basin was created by the eastward motion of the South Orkney microcontinent relative to the Antarctic Peninsula. The axial rift, identified by multichannel seismic profiles obtained during the HESANT 92/93 cruise, and the gravimetric anomalies of the basin plain, together with the transcurrent faults along the northern and southern margins, indicate a predominant WSW-ENE trend of basin extension. The South Orkney microcontinent was incorporated into the Antarctic Plate during the Miocene as a consequence of the end of basin spreading. The eastern and western margins are conjugate and have an intermediate crust in the region of transition to the basin plain. The differences in the basement structure and the architecture of the depositional units suggest that the extensional process was asymmetrical. The southern transtensive margin and the northern transcurrent margin are rectilinear and steep, without any intermediate crust in the narrow fault zone between the base of the continentalblocks slope and the oceanic crust. The multichannel seismic profiles across the central sector of the basin reveal a spreading axis with a double ridge and a central depression filled with sediments. The geometry of the reflectors in this depression indicates that the ponded deposits belong to the early stages of oceaniccrust accretion. This structure is similar to the overlapping spreading centres observed in fast-spreading oceanic axes, where the spreading axis has relay and overlapping segments.

The depositional units of the margins and basin plain have been grouped into four depositional sequences, comprising the classic stages in the formation of an ocean basin: pre-rift (S1), syn-rift (S2), syn-drift (S3), and post-drift (S4). The pre-rift sequence has deformed reflectors and is observed in the southern and eastern margins. The syn-rift sequence, tectonically disrupted, fills depressions bounded by faults and is well-developed in the eastern margin where it is truncated by an erosive surface identified as the break-up unconformity. The syn-drift sequence is wedge-shaped in the basin, thickening towards the margins and having onlap relations on the flanks of the spreading ridge. The post-drift sequence is the thickest unit and is characterised by a cyclic pattern of alternating packages of high-amplitude reflectors, very continuous, and low-amplitude reflectors. Towards the western and eastern margins, the same sequence has channel-levee complexes and channelised, wedged bodies attributed to turbiditic deposits of submarine fans derived from canyons located in the slope and outer shelf. The cyclic nature of this sequence is probably related to advancing and receding grounded ice sheets in the continental shelf since the latest Miocene.  相似文献   

4.
This work describes the ammonite and benthic foraminiferal assemblages recorded across the Aalenian–Bajocian boundary of the Serra da Boa Viagem II section, located about 6 km to the east of the Bajocian GSSP (Murtinheira, Portugal), and calibrated to the standard ammonite zonation previously established for the Lusitanian Basin. A total of 220 ammonite specimens referred to 30 fossiliferous levels were collected and identified throughout the section, enabling the recognition of the Concavum Zone (Concavum and Limitatum subzones) of the upper Aalenian, and the Discites Zone of the lower Bajocian. A total of 2356 foraminifers were obtained from the 16 samples collected along the section, corresponding to 4 suborders, 8 families, 16 genera and 44 species. The occurrence of Lenticulina quenstedti (Gümbel) has enabled the recognition of the Lenticulina quenstedti Zone, ranging from the Bradfordensis Zone (middle Aalenian) to the lower Discites Zone (lower Bajocian). The first record of Ramulina spandeli Paalzow, whose occurrence, up to now, was limited in the Lusitanian Basin to the Murtinheira section (the Bajocian GSSP), highlights the usefulness of the Ramulina spandeli Zone, with its lower boundary referred to the lower Discites Zone (lower Bajocian). Other bioevents displaying local, basinal or regional biostratigraphic interest have also been identified. The benthic foraminiferal record here presented, accurately calibrated with the ammonite record, aims at contributing to support the recognition of the Lenticulina quenstedti Zone and the Ramulina spandeli Zone as formal biostratigraphic units integrating the biostratigraphic scale based on benthic foraminifers for the Aalenian–Bajocian boundary in the Lusitanian Basin (Portugal). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The c. 700 m thick succession of continental–brackish‐marine deposits forming the Lourinhã Formation, cropping out along the coast of western Portugal between Baleal and Santa Cruz, has been correlated using laterally persistent shelly marker beds. Three shelly units record the episodic establishment of relatively short‐lived, brackish‐marine embayments, transgressing from the southwest, onto a low‐lying coastal plain. The succession displays systematic changes in facies types and stacking patterns reflecting differences in fluvial style, bedload character and palaeontological content. Based on these observations, four new members for the Lourinhã Formation are proposed: the Sáo Bernardino, Porto de Barças, Areia Branca and Ferrel members. New biostratigraphical data indicate that the Lourinhã Formation is Late Kimmeridgian to earliest Early Tithonian in age. This age has also been obtained from the underlying mixed carbonate and clastic deposits of the Abadia Formation at Consolação. As a result, these latter sediments are now re‐assigned to the Alcobaça Formation, a lithostratigraphical term currently in use in other areas of the Lusitanian Basin. Improved regional mapping of the Lourinhã Formation has established a new sub‐basin within the western parts of the Lusitanian Basin. This sub‐basin, now named the Consolação Sub‐basin, is bounded to the east by the Lourinhã–Caldas de Rainha (L–C) fault zone and to the west by the Berlengas Horst. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A late Pleistocene morainal bank is sited in a depocentre to the lee of a major rock ridge, near Greystones, in the western Irish Sea Basin. During deglaciation the ridge provided a pinning point during tidewater wastage northwards. Sedimentation patterns and palaeocurrent data show morainal bank growth by discharge from a single basal efflux located to the east or south-east of the ridge during ice marginal re-equilibration. The four lithofacies associations which are recognized from the western part of the formerly more extensive apron are related largely to variable jet and plume sedimentation. At the base of the 1.6 km long exposure, Lithofacies association 1 (massive mud, muddy diamict and laminated mud) was deposited from turbid plumes, variable ice rafting and traction current activity. Lenticular units of gravels within this mud bank record high energy pulses and sediment fluxes from the efflux jet. Lithofacies association 2 (sands, laminated muds and muddy diamict) is discontinuous and occurs within basins along a marked erosion surface cut in Lithofacies association 1. It is associated with a decrease in jet strength, traction currents and suspension sedimentation. Lithofacies association 3 is a tabular body of interbedded diamicts and gravels which is present along the entire section. It documents the decay phase of re-equilibration as the ice margin disintegrated catastrophically and released large volumes of heterogeneous sediment which was resedimented by quasicontinuous mass flow. Lithofacies association 4 consists of stratified and massive gravels within distributary channels cut into underlying facies and represents the last phase of meltwater activity. Sediment geometries, particularly sedimentary contrasts representing erosion surfaces at a variety of scales and abrupt textural contrasts are attributed to jet switching. Lithofacies association 1 (60%) and Lithofacies association 3 (30%) are the dominant facies. In favourable topographic settings this stratigraphic couplet is a signature for re-equilibrated ice margins in isostatically depressed basins dominated by tidewater fronts, rapid ice flux and high relative sea level. Morainal banks document rapid environmental change and in the Irish Sea Basin they form part of a deglacial event stratigraphy related to unstable tidewater margins and high relative sea level. Deglaciation was therefore controlled primarily by high relative sea level rather than climatic forcing. Facies variations should therefore not be used for stratigraphic correlations in place of direct stratigraphy. This type of situation may be more common than hitherto realized in Late Pleistocene, mid-latitude shelves where most of the preserved stratigraphy is characterized by complex, interbedded sequences formed when isostatic depression exceeded sea-level fall.  相似文献   

7.
Recent field mapping has refined our understanding of the stratigraphy and geology of southeastern Bohol, which is composed of a Cretaceous basement complex subdivided into three distinct formations. The basal unit, a metamorphic complex named the Alicia Schist, is overthrust by the Cansiwang mélange, which is, in turn, structurally overlain by the Southeast Bohol Ophiolite Complex. The entire basement complex is overlain unconformably by a ~2000 m thick sequence of Lower Miocene to Pleistocene carbonate and clastic sedimentary rocks and igneous units. Newly identified lithostratigraphic units in the area include the Cansiwang mélange, a tectonic mélange interpreted as an accretionary prism, and the Lumbog Volcaniclastic Member of the Lower Miocene Carmen Formation. The Cansiwang mélange is sandwiched between the ophiolite and the metamorphic complex, suggesting that the Alicia Schist was not formed in response to emplacement of the Southeast Bohol Ophiolite Complex. The accretionary prism beneath the ophiolite complex and the presence of boninites suggest that the Southeast Bohol Ophiolite Complex was emplaced in a forearc setting. The Southeast Bohol Ophiolite Complex formed during the Early Cretaceous in a suprasubduction zone environment related to a southeast‐facing arc (using present‐day geographical references). The accretion of this ophiolite complex was followed by a period of erosion and then later by extensive clastic and carbonate rock deposition (Carmen Formation, Sierra Bullones Limestone and Maribojoc Limestone). The Lumbog Volcaniclastic Member and Jagna Andesite document intermittent Tertiary volcanism in southeastern Bohol.  相似文献   

8.
The Miocene intramontane Fohnsdorf-Seckau Basin is situated at the junction of the sinistral Mur-Mürz-fault system and the dextral Pöls-Lavanttal fault system. The basin comprises a 2,400-m-thick coal-bearing fluviodeltaic-lacustrine succession (Lower to Middle Miocene, Upper Karpatian?/Lower Badenian) which is overlain by a 1,000-m-thick alluvio-deltaic conglomeratic succession (Apfelberg Formation, ?Middle/Upper Badenian) in the south. A three-stage model for the basin evolution has been reconstructed from structural analysis and basin fill geometries. During a first pull-apart phase, subsidence occurred along ENE-trending, sinistral strike-slip faults of the Mur-Mürz fault system and NE-SW to N-S-trending normal faults, forming a composite pull-apart basin between overstepping en-echelon strike-slip faults. The Seckau and Fohnsdorf sub-basins are considered as two adjacent pull-aparts which merged into one basin. During the second phase, N-S to NNW-SSE extension and normal faulting along the southern basin margin fault formed a half-graben, filled by wedge-shaped alluvial strata (Apfelberg Formation). During the third phase, after the end of basin sedimentation, the dextral Pöls-Lavanttal fault system reshaped the western basin margin into a positive flower structure.  相似文献   

9.
The evolution of the early/middle Miocene Fohnsdorf Basin has been studied using borehole data, reflection seismic lines, and vitrinite reflectance. The basin is located along the sinistral Mur-Mürz fault system and probably formed as an asymmetric pull-apart basin, which was subsequently modified by halfgraben tectonics, as a consequence of eastward lateral extrusion. Sedimentation started with the deposition of fluvio-deltaic sediments. Thick coal accumulated in the northwestern basin. Thereafter subsidence rates increased dramatically with the formation of a lake several hundred meters deep. The lake was filled mainly from the north with more than 1500?m of sediments showing a coarsening-upward trend due to southward prograding deltaic lobes. A sequence of more than 1000?m of boulder gravels (Blockschotter) in the southeastern part of the basin are interpreted as the upper part of a coarse-grained fan delta succession, which accumulated along a normal fault along the southern basin margin. Fan deltas reached the central basin only during the early stages of sedimentation and during the late stages of basin formation. Miocene heat flow was approximately 65–70?mW/m2, which is significantly lower than in other basins along the Mur-Mürz fault system. The present-day southwestern basin margin is a recent feature, which is related to transpression along the dextral Pöls-Lavanttal fault system. It is formed by reverse faults constituting the northeastern part of a flower structure. Miocene sediments in the Feeberg valley are preserved along its southwestern part. Uplift of the central part of the flower structure was at least 2.4?km. North–south compression resulted in the deformation of the basin fill, uplift of the E/W-trending basement ridge separating the Fohnsdorf and Seckau basins, and in the erosion of 1750?m of sediments along the northern basin margin.  相似文献   

10.
《Applied Geochemistry》2006,21(4):580-613
To quantify and explain the contributions by pollution and chemical weathering to their composition, we studied the chemistries of springs and surface waters in the mountainous part of the Vouga River basin. Water samples were collected during a number of consecutive summer campaigns. Recharge rates were derived from monitored discharge rates within the basin. Very large contributions by meteoric, agricultural and domestic sources to the water chemistries were found, identified by the chloride, sulfate and nitrate concentrations: on average only 1/4 to 1/3 of the solutes could be attributed to chemical weathering. Two petrologic units characterize the river basin: granites and metasediments. The waters collected within metasediment units are distinct from those in granite terrain by a higher magnesium concentration. On that basis, it could be estimated that the Rio Vouga, when leaving the mountainous part of the basin, has for some 2/5 a signature determined by chemical weathering in the metasediments. The dominant primary minerals subject to chemical weathering are plagioclase (Pl) and biotite (in granite) or Pl and chlorite (in metasediment). Kaolinite, gibbsite and vermiculite are the major weathering products where annual precipitation (P) > 1000 mm y−1, and kaolinite, vermiculite and smectite where P was lower. Using an algorithm based on the ratio of dissolved silica to bicarbonate, the contributions of chemical weathering of primary minerals could be unraveled. The results show that in granite the export rate (as mol ha−1 y−1 wt%mineral−1) of oligoclase (Pl with An10–30) was 5.0 ± 2.6 and of biotite 3.2 ± 2.6, while in metasediment these rates for albite (Pl with An0–10) are 16.5 ± 8.9 and for chlorite are 0.5 ± 0.5. The observed decrease of dissolved silica in surface waters relative to springs was ascribed to (summer) uptake by aquatic biota.  相似文献   

11.
Sequence stratigraphy, based on climatic, tectonic, and base level parameters, can be used to understand carbonate sedimentation in continental basins. The uppermost continental fill of the Guadix Basin (Betic Cordillera), containing both siliciclastics and carbonates, is investigated here. In its central sector a thick succession of fluvio-lacustrine sediments appear, hosting several important Pliocene and Pleistocene macrovertebrate sites (Fonelas Project). The need to characterize the stratigraphic and sedimentologic context of these important paleontologic sites has lead to litho-, magneto- and biostratigraphic studies. These data, together with the sedimentologic analysis of the Pliocene and Pleistocene siliciclastic and carbonate successions, establish a sedimentary model for the fluvio-lacustrine sedimentation of the two last stages of sedimentation in the Guadix Basin (Units V and VI). Unit V comprises mostly fluvial siliciclastic sediments with less abundant carbonate beds interpreted as floodplain lakes or ponds. The latter, Unit VI, is dominated by vertically-stacked, carbonate palustrine successions. Using two pre-existent continental stratigraphic models, the influence of climate, tectonism, and stratigraphic base level during the last 3.5 Ma on the sedimentary evolution of the fluvio-lacustrine system in the Guadix Basin, especially the carbonate sedimentation patterns, is outlined.  相似文献   

12.
The shallow marine sedimentary sequence of the Jaisalmer Basin exhibits one of the important and well-developed Tithonian sedimentary outcrops for western India. The ichnology and ichnofabric of the lower part of Bhadasar Formation (i.e., Kolar Dongar Member) belonging to Tithonian age are presented and discussed. The Kolar Dongar Member represents a shallow marine succession that contains 16 ichnotaxa: Ancorichnus ancorichnus, Conichnus conicus, Gyrochorte comosa, cf. Jamesonichnites heinbergi, Imponoglyphus kevadiensis, Laevicyclus mongraensis, Monocraterion tentaculatum, Ophiomorpha nodosa, Palaeophycus tubularis, P. bolbiterminus, Phycodes palmatus, Planolites beverleyensis, Rhizocorallium isp., Rosselia rotatus, R. socialis, and Teichichnus rectus. The ichnofabric analysis divulges five distinct ichnofabrics, each typifying distinct depositional environment within shallow marine conditions. The ichnofabric Ophiomorpha 1 with syn-sedimentary faulting exemplifies high energy conditions typical of lower shoreface environment, whereas the Ophiomorpha 2 ichnofabric typifies upper shoreface environment. The Ancorichnus ichnofabric reflects lower offshore condition of deposition. The high ichnodiversity AncorichnusRosselia ichnofabric is indicative of inner shelf conditions, while low ichno-diversity Teichichnus ichnofabric indicates prevalence of low energy brackish bay environment. Thus, Tithonian Kolar Dongar Member indicates depositional environment ranging from shoreface to offshore to inner shelf and finally to brackish bay environment.  相似文献   

13.
The Cameros Basin is a part of the Mesozoic Iberian Rift. It is an extensional basin formed during the late Jurassic and early Cretaceous, in the Mesozoic Iberian Rift context, and it was inverted in the Cenozoic as a result of the Alpine contraction. This work aims to reconstruct the tectono-stratigraphic evolution of the basin during the Mesozoic, using new and revised field, geophysical and subsurface data. The construction of a basin-wide balanced section with partial restorations herein offers new insights into the geometry of the syn-rift deposits. Field data, seismic lines and oil well data were used to identify the main structures of the basin and the basin-forming mechanisms. Mapping and cross-sectional data indicate the marked thickness variation of the depositional sequences across the basin, suggesting that the extension of the depositional area varied during the syn-rift stage and that the depocentres migrated towards the north. From field observation and seismic line interpretation, an onlap of the depositional sequences to the north, over the marine Jurassic substratum, can be deduced. In the last few decades, the structure and geometry of the basin have been strongly debated. The structure and geometry of the basin infill reconstructed herein strongly support the interpretation of the Cameros Basin as an extensional-ramp synclinal basin formed on a blind south-dipping extensional ramp. The gradual hanging-wall displacement to the south shifted the depocentres to the north over time, thus increasing the basin in size northwards, with onlap geometry on the pre-rift substratum. The basin was inverted by means of a main thrust located in a detachment located in the Upper Triassic beds (Keuper), which branched in depth with the Mesozoic extensional fault flat. The reconstruction of the tectono-stratigraphic evolution of the Cameros Basin proposed herein represents a synthesis and an integration of previous studies of the structure and geometry of the basin. This study can be used as the basis for future basin-scale research and for modelling the ancient petroleum system of the basin.  相似文献   

14.
The Sivas Basin, located on the Central Anatolian Plateau in Turkey, is an elongate Oligo‐Miocene basin that contains numerous salt‐walled mini‐basins. Through field analysis, including stratigraphic section logging, facies analysis and geological mapping, a detailed tectono‐stratigraphic study of the Emirhan mini‐basin and its 2·6 km thick sediment fill has been undertaken. Three main palaeoenvironments are recognized – playa‐lake, braided stream and lacustrine – each corresponds to a relatively long‐lived depositional episode within a system that was dominated overall by the development of a distributive fluvial system. At local scale, this affects the geometry of the succession and influences facies distributions within preserved sequences. Sequences affected by wedge geometries are characterized by localized channelized sandstone bodies in the area of maximum subsidence and these pass laterally to floodplain mudstone towards the diaper; several internal unconformities are recognized. By contrast, sequences affected by hook geometries display narrow and steep drape‐fold geometries with no evidence of lateral facies change and apparent conformity in the preserved succession. The sediment fill of the Emirhan mini‐basin records the remobilization of diapir‐derived detritus and the presence of evaporitic bodies interbedded within the mini‐basin, implying the growth of salt walls expressed at the surface as palaeo‐topographic highs. The mini‐basin also records the signature of a regional change in stratigraphic assemblage, passing from playa‐lake facies to large‐scale highly amalgamated fluvial facies that represent progradation of the fluvial system. The initiation and evolution of this mini‐basin involves a variety of local and regional controls. Local factors include: (i) salt withdrawal, which influenced the rate and style of subsidence and consequently temporal and spatial variation in the stratigraphic assemblage and the stratal response related to halokinesis; and (ii) salt inflation, which influenced the topographic expression of the diapirs and consequently the occurrence of diapir‐derived detritus intercalated within the otherwise clastic‐dominated succession.  相似文献   

15.
16.
《Geodinamica Acta》2013,26(4):157-163
The Terena Formation is located in the central part of the Ossa-Morena Zone (OMZ) and outcrops in the core of a latter (D3) first order syncline. This Formation is a Lower Devonian flysch and shows an unusual “Z” shape, with a central sector trending nearly N-S, and the tips trending NW-SE. This central sector is crossed by the cleavage (NW-SE) showing an apparent dextral (clockwise) transection pattern, anomalous and opposite to the regional widespread sinistral (anti-clockwise) transpression. The same sector with cartographic dextral transection, shows at outcrop scale, mesoscopic folds with a sinistral transection. During the Lower Devonian a N-S trending basin was developed as an effect of an early tectonic deformation phase. This trough was filled with turbidites and its elongated geometry determined the shape of the main syncline. We propose that the dextral transection pattern, at cartographic scale, result from the superposition of the NW-SE upright S3 cleavage on this major regional structure controlled by a sedimentary trough. The mesoscopic folds, observed on the upper levels of the sedimentary sequence were not influenced by the topographic anisotropy of the basin, and therefore they developed a left transection, according to the regional deformation mechanisms.

The “Z” shape of the syncline could be explained as a consequence of two major tectonic shear zones situated along the north and south boundaries of the OMZ, respectively the Tomar-Badajoz-Cordoba Shear Zone and the South Iberian Suture, lined by the Beja-Acebuches Ophiolitic Complex. Both shear zones have a sinistral transpressive character and were active during late Variscan tectonic events.  相似文献   

17.
The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian–Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive–regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate–siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.  相似文献   

18.
Marine clastic sediments and volcanics of Arenig (Ordovician) age crop out in South Wales. These were deposited after presumed late Tremadoc erosion and subsequent arc volcanicity. Arenig sedimentation was transgressive, and followed significant erosion of the arc volcanics. Arenig conglomerates, sandstones, and mudstones were deposited in deltaic and turbiditic systems. Storm and tidal processes influenced the shallow marine deposits. The minor rhyolitic volcanics extruded during the Arenig reflect the development of Ordovician marginal basin-type volcanics across Wales. Five sandstone petrofacies are defined and reflect differing proportions of these volcanics and of Cambrian and Precambrian basement material. Sedimentation patterns were controlled by intra-Arenig tectonism during an overall rise in sea level. Facies and petrofacies were ponded in small, interconnected, marine sub-basins. Earliest Arenig tectonism and sedimentation, also recognized in North Wales, reflects the initiation of a marginal basin in Wales.  相似文献   

19.
ABSTRACT The Cagayan basin of Northern Luzon, an interarc basin 250 km long and 80 km wide, contains a 900 m thick sequence of Plio-Pleistocene fluvial and pyroclastic deposits. These deposits are divided into two formations, the Ilagan and Awidon Mesa, and three lithofacies associations. The facies, which are interpreted as meandering stream, braided stream, lahar, and pyroclastic flow and fall deposits, occur in a coarsening upward sequence. Meandering stream deposits interbedded with tuffs are overlain by braided stream deposits interbedded with coarser pyroclastic deposits; lahars and ignimbrites. The coarsening upward volcaniclastic deposits reflect the tectonic and volcanic evolution of the adjacent Cordillera Central volcanic arc. Uplift of the arc resulted in the progradation of coarser clastics further into the basin, the development of an alluvial fan, and migration of the basin depocentre away from the arc. The coarsening of the pyroclastic deposits reflects the development of a more proximal calc-alkaline volcanic belt in the maturing volcanic arc. The Cagayan basin sediments serve as an example of the type and sequence of non marine volcaniclastic sediments that may form in other interarc basins. This is because the tectonic and volcanic processes which controlled sedimentation in the Cagayan basin also affect other arc systems and will therefore control or significantly influence volcaniclastic sedimentation in other interarc basins.  相似文献   

20.
Distinct stratification patterns in Lower Liassic mudstones are due to the regular occurrence of shell beds, silty/sandy layers and concretionary horizons. The mudstones formed in four depositional environments: (1) a storm dominated shallow marine system; (2) a hemipelagic system; (3) a shallow marine system influenced by climatic changes at astronomical frequencies; and (4) a pro-deltaic offshore transition/shallow marine system. The tectonic setting played an important role in determining the facies sequence, whereas eustatic sea-level changes were of lesser influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号